258 research outputs found

    Dynamical Mass Measurement of the Young Spectroscopic Binary V343 Normae AaAb Resolved With the Gemini Planet Imager

    Full text link
    We present new spatially resolved astrometry and photometry from the Gemini Planet Imager of the inner binary of the young multiple star system V343 Normae, which is a member of the beta Pictoris moving group. V343 Normae comprises a K0 and mid-M star in a ~4.5 year orbit (AaAb) and a wide 10" M5 companion (B). By combining these data with archival astrometry and radial velocities we fit the orbit and measure individual masses for both components of M_Aa = 1.10 +/- 0.10 M_sun and M_Ab = 0.290 +/- 0.018 M_sun. Comparing to theoretical isochrones, we find good agreement for the measured masses and JHK band magnitudes of the two components consistent with the age of the beta Pic moving group. We derive a model-dependent age for the beta Pic moving group of 26 +/- 3 Myr by combining our results for V343 Normae with literature measurements for GJ 3305, which is another group member with resolved binary components and dynamical masses.Comment: 12 pages, 7 figures. Accepted to A

    Lipid metabolism in tumor immunology and immunotherapy

    Get PDF
    Lipids are a diverse class of biomolecules that have been implicated in cancer pathophysiology and in an array of immune responses, making them potential targets for improving immune responsiveness. Lipid and lipid oxidation also can affect tumor progression and response to treatment. Although their importance in cellular functions and their potential as cancer biomarkers have been explored, lipids have yet to be extensively investigated as a possible form of cancer therapy. This review explores the role of lipids in cancer pathophysiology and describes how further understanding of these macromolecules could prompt novel treatments for cancer

    Optimising Strategies for Plasmodium falciparum Malaria Elimination in Cambodia: Primaquine, Mass Drug Administration and Artemisinin Resistance

    Get PDF
    Malaria elimination requires a variety of approaches individually optimized for different transmission settings. A recent field study in an area of low seasonal transmission in South West Cambodia demonstrated dramatic reductions in malaria parasite prevalence following both mass drug administration (MDA) and high treatment coverage of symptomatic patients with artemisinin-piperaquine plus primaquine. This study employed multiple combined strategies and it was unclear what contribution each made to the reductions in malaria.A mathematical model fitted to the trial results was used to assess the effects of the various components of these interventions, design optimal elimination strategies, and explore their interactions with artemisinin resistance, which has recently been discovered in Western Cambodia. The modelling indicated that most of the initial reduction of P. falciparum malaria resulted from MDA with artemisinin-piperaquine. The subsequent continued decline and near elimination resulted mainly from high coverage with artemisinin-piperaquine treatment. Both these strategies were more effective with the addition of primaquine. MDA with artemisinin combination therapy (ACT) increased the proportion of artemisinin resistant infections, although much less than treatment of symptomatic cases with ACT, and this increase was slowed by adding primaquine. Artemisinin resistance reduced the effectiveness of interventions using ACT when the prevalence of resistance was very high. The main results were robust to assumptions about primaquine action, and immunity.The key messages of these modelling results for policy makers were: high coverage with ACT treatment can produce a long-term reduction in malaria whereas the impact of MDA is generally only short-term; primaquine enhances the effect of ACT in eliminating malaria and reduces the increase in proportion of artemisinin resistant infections; parasite prevalence is a better surveillance measure for elimination programmes than numbers of symptomatic cases; combinations of interventions are most effective and sustained efforts are crucial for successful elimination

    An Optical/Near-infrared Investigation of HD 100546 b with the Gemini Planet Imager and MagAO

    Get PDF
    We present H band spectroscopic and Hα photometric observations of HD 100546 obtained with the Gemini Planet Imager and the Magellan Visible AO camera. We detect H band emission at the location of the protoplanet HD 100546 b, but show that the choice of data processing parameters strongly affects the morphology of this source. It appears point-like in some aggressive reductions, but rejoins an extended disk structure in the majority of the others. Furthermore, we demonstrate that this emission appears stationary on a timescale of 4.6 years, inconsistent at the 2σ level with a Keplerian clockwise orbit at 59 au in the disk plane. The H band spectrum of the emission is inconsistent with any type of low effective temperature object or accreting protoplanetary disk. It strongly suggests a scattered-light origin, as this is consistent with the spectrum of the star and the spectra extracted at other locations in the disk. A non-detection at the 5σ level of HD 100546 b in differential Hα imaging places an upper limit, assuming the protoplanet lies in a gap free of extinction, on the accretion luminosity of 1.7 × 10−4 L ⊙ and MM˙<6.3×107MJup2yr1M\dot{M}\lt 6.3\times {10}^{-7}\,{M}_{\mathrm{Jup}}^{2}\,{\mathrm{yr}}^{-1} for 1 R Jup. These limits are comparable to the accretion luminosity and accretion rate of T-Tauri stars or LkCa 15 b. Taken together, these lines of evidence suggest that the H band source at the location of HD 100546 b is not emitted by a planetary photosphere or an accreting circumplanetary disk but is a disk feature enhanced by the point-spread function subtraction process. This non-detection is consistent with the non-detection in the K band reported in an earlier study but does not exclude the possibility that HD 100546 b is deeply embedded

    Testing the Interaction between a Substellar Companion and a Debris Disk in the HR 2562 System

    Get PDF
    The HR 2562 system is a rare case where a brown dwarf companion resides in a cleared inner hole of a debris disk, offering invaluable opportunities to study the dynamical interaction between a substellar companion and a dusty disk. We present the first ALMA observation of the system as well as the continued Gemini Planet Imager monitoring of the companion's orbit with six new epochs from 2016 to 2018. We update the orbital fit, and in combination with absolute astrometry from GAIA, place a 3σ upper limit of 18.5 MJ on the companion's mass. To interpret the ALMA observations, we used radiative transfer modeling to determine the disk properties. We find that the disk is well resolved and nearly edge-on. While the misalignment angle between the disk and the orbit is weakly constrained, due to the short orbital arc available, the data strongly support a (near) coplanar geometry for the system. Furthermore, we find that the models that describe the ALMA data best have inner radii that are close to the companion's semimajor axis. Including a posteriori knowledge of the system's SED further narrows the constraints on the disk's inner radius and places it at a location that is in reasonable agreement with (possibly interior to) predictions from existing dynamical models of disk truncation by an interior substellar companion. HR 2562 has the potential over the next few years to become a new test bed for dynamical interaction between a debris disk and a substellar companion

    First Resolved Scattered-light Images of Four Debris Disks in Scorpius-Centaurus with the Gemini Planet Imager

    Get PDF
    We present the first spatially resolved scattered-light images of four debris disks around members of the Scorpius-Centaurus (Sco-Cen) OB association with high-contrast imaging and polarimetry using the Gemini Planet Imager (GPI). All four disks are resolved for the first time in polarized light, and one disk is also detected in total intensity. The three disks imaged around HD 111161, HD 143675, and HD 145560 are symmetric in both morphology and brightness distribution. The three systems span a range of inclinations and radial extents. The disk imaged around HD 98363 shows indications of asymmetries in morphology and brightness distribution, with some structural similarities to the HD 106906 planet–disk system. Uniquely, HD 98363 has a wide comoving stellar companion, Wray 15-788, with a recently resolved disk with very different morphological properties. HD 98363 A/B is the first binary debris disk system with two spatially resolved disks. All four targets have been observed with ALMA, and their continuum fluxes range from one nondetection to one of the brightest disks in the region. With the new results, a total of 15 A/F stars in Sco-Cen have resolved scattered-light debris disks, and approximately half of these systems exhibit some form of asymmetry. Combining the GPI disk structure results with information from the literature on millimeter fluxes and imaged planets reveals a diversity of disk properties in this young population. Overall, the four newly resolved disks contribute to the census of disk structures measured around A/F stars at this important stage in the development of planetary systems

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe

    Combined searches for the production of supersymmetric top quark partners in proton-proton collisions at root s=13 TeV

    Get PDF
    A combination of searches for top squark pair production using proton-proton collision data at a center-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 137 fb(-1) collected by the CMS experiment, is presented. Signatures with at least 2 jets and large missing transverse momentum are categorized into events with 0, 1, or 2 leptons. New results for regions of parameter space where the kinematical properties of top squark pair production and top quark pair production are very similar are presented. Depending on themodel, the combined result excludes a top squarkmass up to 1325 GeV for amassless neutralino, and a neutralinomass up to 700 GeV for a top squarkmass of 1150 GeV. Top squarks with masses from 145 to 295 GeV, for neutralino masses from 0 to 100 GeV, with a mass difference between the top squark and the neutralino in a window of 30 GeV around the mass of the top quark, are excluded for the first time with CMS data. The results of theses searches are also interpreted in an alternative signal model of dark matter production via a spin-0 mediator in association with a top quark pair. Upper limits are set on the cross section for mediator particle masses of up to 420 GeV

    Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at root s=13 TeV

    Get PDF
    Peer reviewe
    corecore