12 research outputs found

    Lithuanian rowing federation assessment of perfomance efectiveness

    No full text

    Reversible induction of TDP-43 granules in cortical neurons after traumatic injury

    No full text
    International audienceTraumatic brain injury (TBI) has been proposed as a risk factor for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). To determine whether TBI might trigger or exacerbate ALS-relevant pathology, we delivered a mild stab-wound injury to the motor cortex of three different ALS mouse models expressing mutations in SOD1, TDP-43 or FUS and scrutinized the effects on the formation of phospho-TDP-43 (pTDP-43) cytoplasmic granules. Stab-injury induced the formation of cytoplasmic TDP-43 granules in wt animals, peaking at 3dpi; a much larger response was seen in mutant TDP-43 mice, whose response peaked at 7dpi. The pTDP-43 granules did not colocalize with the stress markers TIAR-1 and FUS but colocalized with FMRP (35%) and with p62 (65%), suggesting their involvement in transport granules and their clearance by autophagy. A similar, albeit smaller effect, was seen in mutant FUS mice. In the SOD1G93A mouse model, neither increase in pTDP-43 granules nor in SOD1 aggregates were detected. In all cases, pTDP-43 granules were cleared and the number of pTDP-43-positive neurons returned to baseline by 40dpi. Neither injury-related neuronal loss nor motor performance or survival was significantly different in transgenic mice receiving injury vs sham mice. Thus, trauma can trigger ALS-related TDP-43 pathology, the extent of which is modulated by ALS-related mutations. However, the pathological findings prove reversible and do not affect disease progression and neuronal vulnerability

    Telomere shortening leads to earlier age of onset in ALS mice

    No full text
    Telomere shortening has been linked to a variety of neurodegenerative diseases. Recent evidence suggests that reduced telomerase expression results in shorter telomeres in leukocytes from sporadic patients with amyotrophic lateral sclerosis (ALS) compared with healthy controls. Here, we have characterized telomere length in microglia, astroglia and neurons in human post mortem brain tissue from ALS patients and healthy controls. Moreover, we studied the consequences of telomerase deletion in a genetic mouse model for ALS. We found a trend towards longer telomeres in microglia in the brains of ALS patients compared to non-neurologic controls. Knockout of telomerase leading to telomere shortening accelerated the ALS phenotype inSOD1G93A-transgenic mice. Our results suggest that telomerase dysfunction might contribute to the age-related risk for ALS.status: publishe

    Telomere shortening leads to earlier age of onset in ALS mice

    No full text
    Telomere shortening has been linked to a variety of neurodegenerative diseases. Recent evidence suggests that reduced telomerase expression results in shorter telomeres in leukocytes from sporadic patients with amyotrophic lateral sclerosis (ALS) compared with healthy controls. Here, we have characterized telomere length in microglia, astroglia and neurons in human post mortem brain tissue from ALS patients and healthy controls. Moreover, we studied the consequences of telomerase deletion in a genetic mouse model for ALS. We found a trend towards longer telomeres in microglia in the brains of ALS patients compared to non-neurologic controls. Knockout of telomerase leading to telomere shortening accelerated the ALS phenotype in SOD1G93A–transgenic mice. Our results suggest that telomerase dysfunction might contribute to the age-related risk for ALS

    Low dietary protein content alleviates motor symptoms in mice with mutant dynactin/dynein-mediated neurodegeneration.

    No full text
    Mutations in components of the molecular motor dynein/dynactin lead to neurodegenerative diseases of the motor system or atypical parkinsonism. These mutations are associated with prominent accumulation of vesicles involved in autophagy and lysosomal pathways, and with protein inclusions. Whether alleviating these defects would affect motor symptoms remain unknown. Here, we show that a mouse model expressing low levels of disease linked-G59S mutant dynactin p150(Glued) develops motor dysfunction >8 months before loss of motor neurons or dopaminergic degeneration is observed. Abnormal accumulation of autophagosomes and protein inclusions were efficiently corrected by lowering dietary protein content, and this was associated with transcriptional upregulations of key players in autophagy. Most importantly this dietary modification partially rescued overall neurological symptoms in these mice after onset. Similar observations were made in another mouse strain carrying a point mutation in the dynein heavy chain gene. Collectively, our data suggest that stimulating the autophagy/lysosomal system through appropriate nutritional intervention has significant beneficial effects on motor symptoms of dynein/dynactin diseases even after symptom onset
    corecore