39 research outputs found

    Drivers of aboveground wood production in a lowland tropical forest of West Africa:teasing apart the roles of tree density, tree diversity, soil phosphorus, and historical logging

    Get PDF
    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Wiley.1. Tropical forests currently play a key role in regulating the terrestrial carbon cycle and abating climate change by storing carbon in wood. However, there remains considerable uncertainty as to whether tropical forests will continue to act as carbon sinks in the face of increased pressure from expanding human activities. Consequently, understanding what drives productivity in tropical forests is critical. 2. We used permanent forest plot data from the Gola Rainforest National Park (Sierra Leone) – one of the largest tracts of intact tropical moist forest in West Africa – to explore how (i) stand basal area and tree diversity, (ii) past disturbance associated with past logging and (iii) underlying soil nutrient gradients interact to determine rates of aboveground wood production (AWP). We started by statistically modelling the diameter growth of individual trees and used these models to estimate AWP for 142 permanent forest plots. We then used structural equation modelling to explore the direct and indirect pathways which shape rates of AWP. 3. Across the plot network, stand basal area emerged as the strongest determinant of AWP, with densely packed stands exhibiting the fastest rates of AWP. In addition to stand packing density, both tree diversity and soil phosphorus content were also positively related to productivity. By contrast, historical logging activities negatively impacted AWP through the removal of large trees, which contributed disproportionately to productivity. 4. Synthesis. Understanding what determines variation in wood production across tropical forest landscapes requires accounting for multiple interacting drivers – with stand structure, tree diversity and soil nutrients all playing a key role. Importantly, our results also indicate that logging activities can have a long-lasting impact on a forest’s ability to sequester and store carbon, emphasizing the importance of safeguarding old-growth tropical forests.This study was funded through a grant from the Cambridge Conservation Initiative Collaborative Fund entitled “Applications of airborne remote sensing to the conservation management of a West African National Park”. T.J. was funded in part through NERC grant NE/K016377/1. A.C.S. was funded in part through a grant from the Percy Sladen Memorial Fund

    Accounting for the low survival of the Critically Endangered northern bald ibis Geronticus eremita on a major migratory flyway

    Get PDF
    AbstractThe poor survival rate of immature northern bald ibises Geronticus eremita during their first years spent outside the natal site is driving the last known wild colony of the migratory eastern population to extinction. To inform emergency conservation action for this Critically Endangered species we investigated the distribution range and behaviour of immature birds in passage and wintering areas, and the threats to which they are subject. We integrated recent satellite telemetry data with visual observations spanning 130 years. We assessed threats across the range, using satellite tracking and field surveys. Our results show that during the years before they return to the natal site in Syria, immature northern bald ibises reside away from the recently identified adult wintering site in the central Ethiopian highlands. They occur mainly across the northernmost 70–80% of the adult migratory range. Historical records suggest that immature birds spend more time along the western Arabian Peninsula now than in the past. This range shift exposes them for longer periods to threats, such as hunting and electrocution on power lines, which are absent from the wintering site used by adult birds. We suggest that other threatened and declining bird species sharing the same flyway probably face the same threats during migration

    Aboveground forest biomass varies across continents, ecological zones and successional stages: refined IPCC default values for tropical and subtropical forests

    Get PDF
    For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relatively crude estimates of average values per continent and ecological zone. The 2006 default values were based on limited plot data available at the time, methods for their derivation were not fully clear, and no distinction between successional stages was made. As part of the 2019 Refinement to the 2006 IPCC Guidelines for GHG Inventories, we updated the default AGB values for tropical and subtropical forests based on AGB data from >25 000 plots in natural forests and a global AGB map where no plot data were available. We calculated refined AGB default values per continent, ecological zone, and successional stage, and provided a measure of uncertainty. AGB in tropical and subtropical forests varies by an order of magnitude across continents, ecological zones, and successional stage. Our refined default values generally reflect the climatic gradients in the tropics, with more AGB in wetter areas. AGB is generally higher in old-growth than in secondary forests, and higher in older secondary (regrowth >20 years old and degraded/logged forests) than in young secondary forests (20 years old). While refined default values for tropical old-growth forest are largely similar to the previous 2006 default values, the new default values are 4.0-7.7-fold lower for young secondary forests. Thus, the refined values will strongly alter estimated carbon stocks and fluxes, and emphasize the critical importance of old-growth forest conservation. We provide a reproducible approach to facilitate future refinements and encourage targeted efforts to establish permanent plots in areas with data gaps

    An estimate of the number of tropical tree species

    Get PDF
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Phylogenetic classification of the world's tropical forests

    Get PDF
    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.</p

    The status of Chattering Cisticola Cisticola anonymus in Upper Guinea

    No full text
    Volume: 127Start Page: 129End Page: 13
    corecore