67 research outputs found

    What Part Should the United States Play in the War?

    Get PDF
    Radio transcript of Lindenwood College students debating whether or not the United States should join World War II. circa April 1941

    Assessment of training and technical assistance needs of Colorectal Cancer Control Program Grantees in the U.S.

    Get PDF
    Background Practitioners often require training and technical assistance to build their capacity to select, adapt, and implement evidence-based interventions (EBIs). The CDC Colorectal Cancer Control Program (CRCCP) aims to promote CRC screening to increase population-level screening. This study identified the training and technical assistance (TA) needs and preferences for training related to the implementation of EBIs among CRCCP grantees. Methods Twenty-nine CRCCP grantees completed an online survey about their screening activities, training and technical assistance in 2012. They rated desire for training on various evidence-based strategies to increase cancer screening, evidence-based competencies, and program management topics. They also reported preferences for training formats and facilitators and barriers to trainings. Results Many CRCCP grantees expressed the need for training with regards to specific EBIs, especially system-level and provider-directed EBIs to promote CRC screening. Grantees rated these EBIs as more difficult to implement than client-oriented EBIs. Grantees also reported a moderate need for training regarding finding EBIs, assessing organizational capacity, implementing selected EBIs, and conducting process and outcome evaluations. Other desired training topics reported with higher frequency were partnership development and data collection/evaluation. Grantees preferred training formats that were interactive such as on-site trainings, webinars or expert consultants. Conclusions Public health organizations need greater supports for adopting evidence-based interventions, working with organizational-level change, partnership development and data management. Future capacity building efforts for the adoption of EBIs should focus on systems or provider level interventions and key processes for health promotion and should be delivered in a variety of ways to assist local organizations in cancer prevention and control

    Impact of the Cancer Prevention and Control Research Network: Accelerating the Translation of Research Into Practice

    Get PDF
    The Cancer Prevention and Control Research Network (CPCRN) is a thematic network dedicated to accelerating the adoption of evidence-based cancer prevention and control practices in communities by advancing dissemination and implementation science. Funded by the Centers for Disease Control and Prevention and National Cancer Institute, CPCRN has operated at two levels: Each participating Network Center conducts research projects with primarily local partners as well as multicenter collaborative research projects with state and national partners. Through multicenter collaboration, thematic networks leverage the expertise, resources, and partnerships of participating centers to conduct research projects collectively that might not be feasible individually. Although multicenter collaboration often is advocated, it is challenging to promote and assess. Using bibliometric network analysis and other graphical methods, this paper describes CPCRN’s multicenter publication progression from 2004 to 2014. Searching PubMed, Scopus, and Web of Science in 2014 identified 249 peer-reviewed CPCRN publications involving two or more centers out of 6,534 total. The research and public health impact of these multicenter collaborative projects initiated by CPCRN during that 10-year period were then examined. CPCRN established numerous workgroups around topics such as: 2-1-1, training and technical assistance, colorectal cancer control, federally qualified health centers, cancer survivorship, and human papillomavirus. The paper discusses the challenges that arise in promoting multicenter collaboration and the strategies that CPCRN uses to address those challenges. The lessons learned should broadly interest those seeking to promote multisite collaboration to address public health problems, such as cancer prevention and control

    Data Assimilation Enhancements to Air Force Weathers Land Information System

    Get PDF
    The United States Air Force (USAF) has a proud and storied tradition of enabling significant advancements in the area of characterizing and modeling land state information. 557th Weather Wing (557 WW; DoDs Executive Agent for Land Information) provides routine geospatial intelligence information to warfighters, planners, and decision makers at all echelons and services of the U.S. military, government and intelligence community. 557 WW and its predecessors have been home to the DoDs only operational regional and global land data analysis systems since January 1958. As a trusted partner since 2005, Air Force Weather (AFW) has relied on the Hydrological Sciences Laboratory at NASA/GSFC to lead the interagency scientific collaboration known as the Land Information System (LIS). LIS is an advanced software framework for high performance land surface modeling and data assimilation of geospatial intelligence (GEOINT) information

    Predictive modeling of indoor dust lead concentrations: Sources, risks, and benefits of intervention

    Get PDF
    Lead (Pb) contamination continues to contribute to world-wide morbidity in all countries, particularly low- and middle-income countries. Despite its continued widespread adverse effects on global populations, particularly children, accurate prediction of elevated household dust Pb and the potential implications of simple, low-cost household interventions at national and global scales have been lacking. A global dataset (∼40 countries, n = 1951) of community sourced household dust samples were used to predict whether indoor dust was elevated in Pb, expanding on recent work in the United States (U.S.). Binned housing age category alone was a significant (p < 0.01) predictor of elevated dust Pb, but only generated effective predictive accuracy for England and Australia (sensitivity of ∼80%), similar to previous results in the U.S. This likely reflects comparable Pb pollution legacies between these three countries, particularly with residential Pb paint. The heterogeneity associated with Pb pollution at a global scale complicates the predictive accuracy of our model, which is lower for countries outside England, the U.S., and Australia. This is likely due to differing environmental Pb regulations, sources, and the paucity of dust samples available outside of these three countries. In England, the U.S., and Australia, simple, low-cost household intervention strategies such as vacuuming and wet mopping could conservatively save 70 billion USD within a four-year period based on our model. Globally, up to 1.68 trillion USD could be saved with improved predictive modeling and primary intervention to reduce harmful exposure to Pb dust sources

    The emerging landscape of single-molecule protein sequencing technologies

    Get PDF
    Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell profiling. These technologies will in turn facilitate biological discovery and open new avenues for ultrasensitive disease diagnostics.This Perspective describes new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell proteomics.</p

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies

    Get PDF
    First published: 16 February 202
    corecore