187 research outputs found

    Strong Gravitational Lensing and Dark Energy Complementarity

    Full text link
    In the search for the nature of dark energy most cosmological probes measure simple functions of the expansion rate. While powerful, these all involve roughly the same dependence on the dark energy equation of state parameters, with anticorrelation between its present value w_0 and time variation w_a. Quantities that have instead positive correlation and so a sensitivity direction largely orthogonal to, e.g., distance probes offer the hope of achieving tight constraints through complementarity. Such quantities are found in strong gravitational lensing observations of image separations and time delays. While degeneracy between cosmological parameters prevents full complementarity, strong lensing measurements to 1% accuracy can improve equation of state characterization by 15-50%. Next generation surveys should provide data on roughly 10^5 lens systems, though systematic errors will remain challenging.Comment: 7 pages, 5 figure

    Probing Gravitation, Dark Energy, and Acceleration

    Full text link
    The acceleration of the expansion of the universe arises from unknown physical processes involving either new fields in high energy physics or modifications of gravitation theory. It is crucial for our understanding to characterize the properties of the dark energy or gravity through cosmological observations and compare and distinguish between them. In fact, close consistencies exist between a dark energy equation of state function w(z) and changes to the framework of the Friedmann cosmological equations as well as direct spacetime geometry quantities involving the acceleration, such as ``geometric dark energy'' from the Ricci scalar. We investigate these interrelationships, including for the case of superacceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.Comment: 12 pages, 8 figure

    Controlling the superconducting transition by spin-orbit coupling

    Get PDF
    Whereas there exists considerable evidence for the conversion of singlet Cooper pairs into triplet Cooper pairs in the presence of inhomogeneous magnetic fields, recent theoretical proposals have suggested an alternative way to exert control over triplet generation: intrinsic spin-orbit coupling in a homogeneous ferromagnet coupled to a superconductor. Here, we proximity-couple Nb to an asymmetric Pt/Co/Pt trilayer, which acts as an effective spin-orbit coupled ferromagnet owing to structural inversion asymmetry. Unconventional modulation of the superconducting critical temperature as a function of in-plane and out-of-plane applied magnetic fields suggests the presence of triplets that can be controlled by the magnetic orientation of a single homogeneous ferromagnet. Our studies demonstrate for the first time an active role of spin-orbit coupling in controlling the triplets – an important step towards the realization of novel superconducting spintronic devices

    Statistical methods applied to composition studies of ultrahigh energy cosmic rays

    Get PDF
    The mass composition of high energy cosmic rays above 101710^{17} eV is a crucial issue to solve some open questions in astrophysics such as the acceleration and propagation mechanisms. Unfortunately, the standard procedures to identify the primary particle of a cosmic ray shower have low efficiency mainly due to large fluctuations and limited experimental observables. We present a statistical method for composition studies based on several measurable features of the longitudinal development of the CR shower such as NmaxN_{max}, XmaxX_{max}, asymmetry, skewness and kurtosis. Principal component analysis (PCA) was used to evaluate the relevance of each parameter in the representation of the overall shower features and a linear discriminant analysis (LDA) was used to combine the different parameters to maximize the discrimination between different particle showers. The new parameter from LDA provides a separation between primary gammas, proton and iron nuclei better than the procedures based on XmaxX_{max} only. The method proposed here was successfully tested in the energy range from 101710^{17} to 102010^{20} eV even when limitations of shower track length were included in order to simulate the field of view of fluorescence telescopes

    Impairment of Sexual Life in 3,485 Dermatological Outpatients From a Multicentre Study in 13 European Countries

    Get PDF
    Skin conditions may have a strong impact on patients' sexual life, and thus influence personal relationships. Sexual issues are difficult to discuss directly in clinical practice, and a mediated instrument may be useful to capture such information. In this study item 9 of the Dermatology Life Quality Index was used to collect information on sexual impact of several skin conditions in 13 European countries. Among 3,485 patients, 23.1% reported sexual problems. The impairment was particularly high in patients with hidradenitis suppurativa, prurigo, blistering disorders, psoriasis, urticaria, eczema, infections of the skin, or pruritus. Sexual impact was strongly associated with depression, anxiety, and suicidal ideation. It was generally more frequent in younger patients and was positively correlated with clinical severity and itch. It is important to address the issue of sexual well-being in the evaluation of patients with skin conditions, since it is often linked to anxiety, depression, and even suicidal ideation.Peer reviewedFinal Published versio

    Probing Dark Energy with Supernovae : Bias from the time evolution of the equation of state

    Full text link
    Observation of thousands of type Ia supernovae should offer the most direct approach to probe the dark energy content of the universe. This will be undertaken by future large ground-based surveys followed by a space mission (SNAP/JDEM). We address the problem of extracting the cosmological parameters from the future data in a model independent approach, with minimal assumptions on the prior knowledge of some parameters. We concentrate on the comparison between a fiducial model and the fitting function and adress in particular the effect of neglecting (or not) the time evolution of the equation of state. We present a quantitative analysis of the bias which can be introduced by the fitting procedure. Such bias cannot be ignored as soon as the statistical errors from present data are drastically improved.Comment: 22 pages, 10 figures, submitted to Phys. Rev.

    Reliability of fluctuation-induced transport in a Maxwell-demon-type engine

    Get PDF
    We study the transport properties of an overdamped Brownian particle which is simultaneously in contact with two thermal baths. The first bath is modeled by an additive thermal noise at temperature TAT_A. The second bath is associated with a multiplicative thermal noise at temperature TBT_B. The analytical expressions for the particle velocity and diffusion constant are derived for this system, and the reliability or coherence of transport is analyzed by means of their ratio in terms of a dimensionless P\'{e}clet number. We find that the transport is not very coherent, though one can get significantly higher currents.Comment: 14 pages, 5 figure

    Molecular spintronics: Coherent spin transfer in coupled quantum dots

    Full text link
    Time-resolved Faraday rotation has recently demonstrated coherent transfer of electron spin between quantum dots coupled by conjugated molecules. Using a transfer Hamiltonian ansatz for the coupled quantum dots, we calculate the Faraday rotation signal as a function of the probe frequency in a pump-probe setup using neutral quantum dots. Additionally, we study the signal of one spin-polarized excess electron in the coupled dots. We show that, in both cases, the Faraday rotation angle is determined by the spin transfer probabilities and the Heisenberg spin exchange energy. By comparison of our results with experimental data, we find that the transfer matrix element for electrons in the conduction band is of order 0.08 eV and the spin transfer probabilities are of order 10%.Comment: 13 pages, 6 figures; minor change

    Controlling supercurrents and their spatial distribution in ferromagnets

    Get PDF
    Quantum Matter and Optic

    Constraining the expansion rate of the Universe using low-redshift ellipticals as cosmic chronometers

    Full text link
    We present a new methodology to determine the expansion history of the Universe analyzing the spectral properties of early type galaxies (ETG). We found that for these galaxies the 4000\AA break is a spectral feature that correlates with the relative ages of ETGs. In this paper we describe the method, explore its robustness using theoretical synthetic stellar population models, and apply it using a SDSS sample of \sim14 000 ETGs. Our motivation to look for a new technique has been to minimise the dependence of the cosmic chronometer method on systematic errors. In particular, as a test of our method, we derive the value of the Hubble constant H0=72.6±2.8H_0 = 72.6 \pm 2.8 (stat) ±2.3\pm2.3 (syst) (68% confidence), which is not only fully compatible with the value derived from the Hubble key project, but also with a comparable error budget. Using the SDSS, we also derive, assuming w=constant, a value for the dark energy equation of state parameter w=1±0.2w = -1 \pm 0.2 (stat) ±0.3\pm0.3 (syst). Given the fact that the SDSS ETG sample only reaches z0.3z \sim 0.3, this result shows the potential of the method. In future papers we will present results using the high-redshift universe, to yield a determination of H(z) up to z1z \sim 1.Comment: 25 pages, 17 figures, JCAP accepte
    corecore