1,700 research outputs found
Two-temperature relaxation and melting after absorption of femtosecond laser pulse
The theory and experiments concerned with the electron-ion thermal relaxation
and melting of overheated crystal lattice constitute the subject of this paper.
The physical model includes two-temperature equation of state, many-body
interatomic potential, the electron-ion energy exchange, electron thermal
conductivity, and optical properties of solid, liquid, and two phase
solid-liquid mixture. Two-temperature hydrodynamics and molecular dynamics
codes are used. An experimental setup with pump-probe technique is used to
follow evolution of an irradiated target with a short time step 100 fs between
the probe femtosecond laser pulses. Accuracy of measurements of reflection
coefficient and phase of reflected probe light are ~1% and \sim 1\un{nm},
respectively. It is found that,
{\it firstly}, the electron-electron collisions make a minor contribution to
a light absorbtion in solid Al at moderate intensities;
{\it secondly}, the phase shift of a reflected probe results from heating of
ion subsystem and kinetics of melting of Al crystal during 0
where is time delay between the pump and probe pulses measured from the
maximum of the pump;
{\it thirdly} the optical response of Au to a pump shows a marked contrast to
that of Al on account of excitation of \textit{d}-electronsComment: 6th International Conference on Photo-Excited Processes and
Applications 9-12 Sep 2008, Sapporo, Japan, http://www.icpepa6.com, the
contributed paper will be published in Applied Surface Science(2009
Homoclinic crossing in open systems: Chaos in periodically perturbed monopole plus quadrupolelike potentials
The Melnikov method is applied to periodically perturbed open systems modeled
by an inverse--square--law attraction center plus a quadrupolelike term. A
compactification approach that regularizes periodic orbits at infinity is
introduced. The (modified) Smale-Birkhoff homoclinic theorem is used to study
transversal homoclinic intersections. A larger class of open systems with
degenerated (nonhyperbolic) unstable periodic orbits after regularization is
also briefly considered.Comment: 19 pages, 15 figures, Revtex
Membrane Instantons and de Sitter Vacua
We investigate membrane instanton effects in type IIA strings compactified on
rigid Calabi-Yau manifolds. These effects contribute to the low-energy
effective action of the universal hypermultiplet. In the absence of additional
fivebrane instantons, the quaternionic geometry of this hypermultiplet is
determined by solutions of the three-dimensional Toda equation. We construct
solutions describing membrane instantons, and find perfect agreement with the
string theory prediction. In the context of flux compactifications we discuss
how membrane instantons contribute to the scalar potential and the
stabilization of moduli. Finally, we demonstrate the existence of meta-stable
de Sitter vacua.Comment: v3: minor clarifications, JHEP version, 38 page
Wilson Loops, Geometric Transitions and Bubbling Calabi-Yau's
Motivated by recent developments in the AdS/CFT correspondence, we provide
several alternative bulk descriptions of an arbitrary Wilson loop operator in
Chern-Simons theory. Wilson loop operators in Chern-Simons theory can be given
a description in terms of a configuration of branes or alternatively
anti-branes in the resolved conifold geometry. The representation of the Wilson
loop is encoded in the holonomy of the gauge field living on the dual brane
configuration. By letting the branes undergo a new type of geometric
transition, we argue that each Wilson loop operator can also be described by a
bubbling Calabi-Yau geometry, whose topology encodes the representation of the
Wilson loop. These Calabi-Yau manifolds provide a novel representation of knot
invariants. For the unknot we confirm these identifications to all orders in
the genus expansion.Comment: 26 pages; v.2 typos corrected, explanations clarified; v.3 typos
corrected, reference adde
Towards Controlling the Acceptance Factors for a Collaborative Platform in Engineering Design
International audienceThis paper might serve as a guide to take step towards a better acceptance of computer-based Knowledge management (KM) tools in institutional setting. At first time, it investigates a set of factors with different origins which are proved to have an effect on usage decision. Secondly, we set a list of candidate factor which are supposed to influence future users of a collaborative KM platform (Dimocode). At the end, we develop a methodology to take into account the selected factors and master their positive or negative impacts. The contents of this paper would be an appropriate framework in the way of Knowledge management systems (KMS) deployment
On the structure and evolution of a polar crown prominence/filament system
Polar crown prominences are made of chromospheric plasma partially circling
the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D
dynamics of a polar crown prominence using high cadence EUV images from the
Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft
of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using
time series across specific structures we compare flows across the disk in 195A
with the prominence dynamics seen on the limb. The densest prominence material
forms vertical columns which are separated by many tens of Mm and connected by
dynamic bridges of plasma that are clearly visible in 304/171A two-color
images. We also observe intermittent but repetitious flows with velocity 15
km/s in the prominence that appear to be associated with EUV bright points on
the solar disk. The boundary between the prominence and the overlying cavity
appears as a sharp edge. We discuss the structure of the coronal cavity seen
both above and around the prominence. SDO/HMI and GONG magnetograms are used to
infer the underlying magnetic topology. The evolution and structure of the
prominence with respect to the magnetic field seems to agree with the filament
linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics
Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar
Логіко-лінгвістична модель як засіб відображення синтаксичних особливостей текстової інформації
Запропоновано використовувати логіко-лінгвістичні моделі як засіб відображення синтаксичних особливостей текстової інформації, перелічено та обґрунтовано правила їх формування, наведено алгоритм створення всіх складових таких моделей.Предложено использовать логико-лингвистические модели как способ отображения синтаксических особенностей текстовой информации, перечислены и обоснованы правила их формирования, приведен алгоритм создания всех составных таких моделей.It is suggested using a logico-linguistic model as a method of display the syntactical features of text information. There are listed and justified the rules for their forming and also are shown an algorithm of creation of all components of such models in this paper
OSSOS III - RESONANT TRANS-NEPTUNIAN POPULATIONS: CONSTRAINTS from the FIRST QUARTER of the OUTER SOLAR SYSTEM ORIGINS SURVEY
The first two observational sky "blocks" of the Outer Solar System Origins Survey (OSSOS) have significantly increased the number of well characterized observed trans-Neptunian objects (TNOs) in Neptune's mean motion resonances. We describe the 31 securely resonant TNOs detected by OSSOS so far, and we use them to independently verify the resonant population models from the Canada–France Ecliptic Plane Survey (CFEPS), with which we find broad agreement. We confirm that the 5:2 resonance is more populated than models of the outer solar system's dynamical history predict; our minimum population estimate shows that the high-eccentricity (e > 0.35) portion of the resonance is at least as populous as the 2:1 and possibly as populated as the 3:2 resonance. One OSSOS block was well suited for detecting objects trapped at low libration amplitudes in Neptune's 3:2 resonance, a population of interest in testing the origins of resonant TNOs. We detected three 3:2 objects with libration amplitudes below the cutoff modeled by CFEPS; OSSOS thus offers new constraints on this distribution. The OSSOS detections confirm that the 2:1 resonance has a dynamically colder inclination distribution than either the 3:2 or 5:2 resonances. Using the combined OSSOS and CFEPS 2:1 detections, we constrain the fraction of 2:1 objects in the symmetric mode of libration to 0.2–0.85; we also constrain the fraction of asymmetric librators in the leading island, which has been theoretically predicted to vary depending on Neptune's migration history, to be 0.05–0.8. Future OSSOS blocks will improve these constraints
Partonic flow and -meson production in Au+Au collisions at = 200 GeV
We present first measurements of the -meson elliptic flow
() and high statistics distributions for different
centralities from = 200 GeV Au+Au collisions at RHIC. In
minimum bias collisions the of the meson is consistent with the
trend observed for mesons. The ratio of the yields of the to those of
the as a function of transverse momentum is consistent with a model
based on the recombination of thermal quarks up to GeV/,
but disagrees at higher momenta. The nuclear modification factor () of
follows the trend observed in the mesons rather than in
baryons, supporting baryon-meson scaling. Since -mesons are
made via coalescence of seemingly thermalized quarks in central Au+Au
collisions, the observations imply hot and dense matter with partonic
collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
Euler Top Dynamics of Nambu-Goto P-Branes
We propose a method to obtain new exact solutions of spinning p-branes in
flat space-times for any p, which manifest themselves as higher dimensional
Euler Tops and minimize their energy functional. We provide concrete examples
for the case of spherical topology S^{2}, S^{3} and rotational symmetry
\prod_{i}SO(q_{i}). In the case of toroidal topology T^{2}, T^{3} the
rotational symmetry is \prod SU(q_{i}) and m target dimensions are compactified
on the torus T^{m} . By double dimensional reduction the Light Cone
Hamiltonians of T^{2}, T^{3} reduce to those of closed string S^{1} and T^{2}
membranes respectively. The solutions are interpreted as non-perturbative
spinning soliton states of type IIA-IIB superstrings.Comment: 33 pages, LATEX; more typos corrected; some equation numbering
correction
- …
