7,457 research outputs found

    Intraseasonal variation of the East Asian summer monsoon associated with the MJO

    Get PDF
    We investigate the daily variability of the East Asian summer monsoon (EASM) by projecting daily wind anomaly data onto the two major modes of an interannual multivariate Empirical Orthogonal Functions analysis. Mode 1, closely resembling the Pacific-Japan (PJ) pattern and referred to as PJ-mode, transits from positive to negative phase around mid-summer consistent with the Meiyu rains predominantly being an early summer phenomenon. Mode 2, which is influenced by the Indian summer monsoon (ISM) and referred to as ISM-mode, peaks in late July and early August and is associated with rainfall farther north over China. We then analyze the relation between the intraseasonal variation of the EASM and the Madden-Julian Oscillation (MJO) by analyzing circulation anomalies following MJO events. In the lower troposphere, the circulation anomalies associated with the MJO most strongly project on the PJ-mode. MJO phases 1-4 (5-8) favor the positive (negative) phase of the PJ-mode by favoring the anticyclonic (cyclonic) anomalies over the subtropical western North Pacific. In the upper troposphere, the circulation anomalies associated with the MJO project mainly on the ISM-mode

    Record Maximum Oscillation Frequency in C-face Epitaxial Graphene Transistors

    Full text link
    The maximum oscillation frequency (fmax) quantifies the practical upper bound for useful circuit operation. We report here an fmax of 70 GHz in transistors using epitaxial graphene grown on the C-face of SiC. This is a significant improvement over Si-face epitaxial graphene used in the prior high frequency transistor studies, exemplifying the superior electronics potential of C-face epitaxial graphene. Careful transistor design using a high {\kappa} dielectric T-gate and self-aligned contacts, further contributed to the record-breaking fmax

    Theory of free space coupling to high-Q whispering gallery modes

    Full text link
    A theoretical study of free space coupling to high-Q whispering gallery modes both in circular and deformed microcavities are presented. In the case of a circular cavity, both analytical solutions and asymptotic formulas are derived. The coupling efficiencies at different coupling regimes for cylinder incoming wave are discussed, and the maximum efficiency is estimated for the practical Gaussian beam excitation. In the case of a deformed cavity, the coupling efficiency can be higher if the excitation beam can match the intrinsic emission well and the radiation loss can be tuned by adjusting the degree of deformation. Employing an abstract model of slightly deformed cavity, we found that the asymmetric and peak like line shapes instead of the Lorentz-shape dip are universal in transmission spectra due to multi-mode interference, and the coupling efficiency can not be estimated from the absolute depth of the dip. Our results provide guidelines for free space coupling in experiments, suggesting that the high-Q ARCs can be efficiently excited through free space which will stimulate further experiments and applications of WGMs based on free space coupling.Comment: 8 pages, 4 figure

    Stripes and electronic quasiparticles in the pseudogap state of cuprate superconductors

    Full text link
    This article is devoted to a discussion of stripe and electron-nematic order and their connection to electronic properties in the pseudogap regime of copper-oxide superconductors. We review basic properties of these symmetry-breaking ordering phenomena as well as proposals which connect them to quantum-oscillation measurements. Experimental data indicate that these orders are unlikely to be the cause of the pseudogap phenomenon, implying that they occur on top of the pseudogap state which itself is of different origin. Specifically, we discuss the idea that the non-superconducting pseudogap ground state hosts electron-like quasiparticles which coexist with a spin liquid, realizing a variant of a fractionalized Fermi liquid. We speculate on how stripe order in such a pseudogap state might offer a consistent description of ARPES, NMR, quantum-oscillation, and transport data.Comment: 15 pages, 6 figs. Article prepared for a Physica C special issue on "Stripes and Electronic Liquid Crystals

    Transfer-free growth of graphene on SiO2 insulator substrate from sputtered carbon and nickel films

    Get PDF
    AbstractHere we demonstrate the growth of transfer-free graphene on SiO2 insulator substrates from sputtered carbon and metal layers with rapid thermal processing in the same evacuation. It was found that graphene always grows atop the stack and in close contact with the Ni. Raman spectra typical of high quality exfoliated monolayer graphene were obtained for samples under optimised conditions with monolayer surface coverage of up to 40% and overall graphene surface coverage of over 90%. Transfer-free graphene is produced on SiO2 substrates with the removal of Ni in acid when Ni thickness is below 100nm, which effectively eliminates the need to transfer graphene from metal to insulator substrates and paves the way to mass production of graphene directly on insulator substrates. The characteristics of Raman spectrum depend on the size of Ni grains, which in turn depend on the thickness of Ni, layer deposition sequence of the stack and RTP temperature. The mechanism of the transfer-free growth process was studied by AFM in combination with Raman. A model is proposed to depict the graphene growth process. Results also suggest a monolayer self-limiting growth for graphene on individual Ni grains
    • …
    corecore