526 research outputs found
The Chiral Magnetic Effect in Heavy Ion Collisions From Hydrodynamic Simulations
The quark-gluon plasma created in heavy ion collisions is an exotic state of matter in which many unusual phenomena are manifested. One such phenomenon is the Chiral-Magnetic Effect (CME), wherein the powerful magnetic fields generated by colliding ions spin-polarize chiral quarks, causing a net transport effect in the direction of the fields. The CME predicts specific charge-dependent correlation observables, for which experimental evidence was reported, although the evidence is subject to background contamination. Isobaric collision experiments have been planned for 2018 at RHIC, which will study this effect by comparing 96Ru-96Ru and 96Zr-96Zr collisions. The two colliding systems are expected to have nearly identical bulk properties (including background contamination), yet about 10% difference in their magnetic fields due to different nuclear charges. This provides a unique opportunity to disentangle the CME observable and background effects. By simulating this effect using anomalous hydrodynamic simulations, we make a quantitative prediction for the CME-induced signal for several centralities in each of these two colliding systems. Our results suggest a significant enough difference in the signal to be experimentally detected- on the order of 15-20%
Quantifying the Chiral Magnetic Effect from Anomalous-Viscous Fluid Dynamics
In this contribution we report a recently developed Anomalous-Viscous Fluid
Dynamics (AVFD) framework, which simulates the evolution of fermion currents in
QGP on top of the bulk expansion from data-validated VISHNU hydrodynamics. With
reasonable estimates of initial conditions and magnetic field lifetime, the
predicted CME signal is quantitatively consistent with change separation
measurements in 200GeV Au-Au collisions at RHIC. We further develop the
event-by-event AVFD simulations that allow direct evaluation of two-particle
correlations arising from CME signal as well as the non-CME backgrounds.
Finally we report predictions from AVFD simulations for the upcoming isobaric
(Ru-Ru v.s. Zr-Zr ) collisions that could provide the critical test of the CME
in heavy ion collisions.Comment: Contribution to the Proceedings of the XXVIth International
Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter
2017), Feb 5-11, Chicago, U.S.A. 4 pages, 6 figure
Quantification of Chiral Magnetic Effect from Event-by-Event Anomalous-Viscous Fluid Mechanics
Chiral Magnetic Effect (CME) is the macroscopic manifestation of the
fundamental chiral anomaly in a many-body system of chiral fermions, and
emerges as anomalous transport current in hydrodynamic framework. Experimental
observation of CME is of great interest and significant efforts have been made
to look for its signals in heavy ion collisions. Encouraging evidence of
CME-induced charge separation has been reported from both RHIC and LHC, albeit
with ambiguity due to potential background contributions. Crucial for
addressing such issue, is the need of quantitative predictions for both CME
signal and the non-CME background consistently, with sophisticated modeling
tool. In this contribution we report a recently developed Anomalous Viscous
Fluid Dynamics (AVFD) framework, which simulates the evolution of fermion
currents in QGP on top of the data-validated VISHNU bulk hydro evolution. In
particular, this framework has been extended to event-by-event simulations with
proper implementation of known flow-driven background contributions. We report
quantitative results from such simulations and evaluate the implications for
interpretations of current experimental measurements. Finally we give our
prediction for the CME signal in upcoming isobaric collisions.Comment: 5 pages, 7 figures; plenary talk at CPOD 2017 conference, Stony Brook
University, Stony Brook, NY. arXiv admin note: substantial text overlap with
arXiv:1704.05531; text overlap with arXiv:1611.0458
Anomalous Chiral Transport in Heavy Ion Collisions from Anomalous-Viscous Fluid Dynamics
Chiral anomaly is a fundamental aspect of quantum theories with chiral
fermions. How such microscopic anomaly manifests itself in a macroscopic
many-body system with chiral fermions, is a highly nontrivial question that has
recently attracted significant interest. As it turns out, unusual transport
currents can be induced by chiral anomaly under suitable conditions in such
systems, with the notable example of the Chiral Magnetic Effect (CME) where a
vector current (e.g. electric current) is generated along an external magnetic
field. A lot of efforts have been made to search for CME in heavy ion
collisions, by measuring the charge separation effect induced by the CME
transport. A crucial challenge in such effort, is the quantitative prediction
for the CME signal. In this paper, we develop the Anomalous-Viscous Fluid
Dynamics (AVFD) framework, which implements the anomalous fluid dynamics to
describe the evolution of fermion currents in QGP, on top of the neutral bulk
background described by the VISH2+1 hydrodynamic simulations for heavy ion
collisions. With this new tool, we quantitatively and systematically
investigate the dependence of the CME signal to a series of theoretical inputs
and associated uncertainties. With realistic estimates of initial conditions
and magnetic field lifetime, the predicted CME signal is quantitatively
consistent with measured change separation data in 200GeV Au-Au collisions.
Based on analysis of Au-Au collisions, we further make predictions for the CME
observable to be measured in the planned isobaric (Ru-Ru v.s. Zr-Zr ) collision
experiment, which could provide a most decisive test of the CME in heavy ion
collisions.Comment: 28 pages, 13 figures; published versio
Eastern Temperate Forests
Human activity in the last century has led to a substantial increase in nitrogen (N) emissions and deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the level of pollution that would be harmful to ecosystems is the critical loads approach. The critical load is dei ned as the level of a pollutant below which no detrimental ecological effect occurs over the long term according to present knowledge.
The objective of this project was to synthesize current research relating atmospheric N deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The receptors that we evaluated included freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical, and (2) individual species, population, and community responses.
The range of critical loads for nutrient N reported for U.S. ecoregions, inland surface waters, and freshwater wetlands is 1 to 39 kg N ha-1 y-1. This broad range spans the range of N deposition observed over most of the country. The empirical critical loads for N tend to increase in the following sequence for different life forms: diatoms, lichens and bryophytes, mycorrhizal fungi, herbaceous plants and shrubs, trees.
The critical loads approach is an ecosystem assessment tool with great potential to simplify complex scientii c information and effectively communicate with the policy community and the public. This synthesis represents the i rst comprehensive assessment of empirical critical loads of N for ecoregions across the United States
Recommended from our members
Shifts in ectomycorrhizal fungal communities and exploration types relate to the environment and fine-root traits across interior Douglas-fir forests of western Canada
Large-scale studies that examine the responses of ectomycorrhizal fungi across biogeographic gradients are necessary to assess their role in mediating current and predicted future alterations in forest ecosystem processes. We assessed the extent of environmental filtering on interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) ectomycorrhizal fungal communities across regional gradients in precipitation, temperature, and soil fertility in interior Douglas-fir dominated forests of western Canada. We also examined relationships between fine-root traits and mycorrhizal fungal exploration types by combining root and fungal trait measurements with next-generation sequencing. Temperature, precipitation, and soil C:N ratio affected
fungal community dissimilarities and exploration type abundance but had no effect on fungal richness and α‐diversity. Fungi with rhizomorphs (e.g., Piloderma sp.) and/or proteolytic abilities (e.g., Cortinarius sp.) dominated communities in warmer and less fertile environments. Ascomycetes (e.g., Cenococcum geophilum) and/or shorter distance explorers, which are potentially cost the plant less C, were favored in colder/drier climates where soils were richer in total nitrogen. Environmental filtering of ectomycorrhizal fungal communities is potentially related to co-evolutionary history between Douglas-fir populations and fungal symbionts, suggesting success of interior Douglas-fir as climate changes may be dependent on maintaining strong associations with local communities of mycorrhizal fungi. No evidence for a link between root and fungal resource foraging strategies was found at the regional scale. This lack of evidence further supports the need for a separate mycorrhizal symbiosis framework, independent from root trait frameworks, to aid in understanding below-ground plant uptake strategies across environments
Synthesis
Human activity in the last century has led to a substantial increase in nitrogen (N) emissions and deposition. This N deposition has reached a level that has caused or is likely to cause alterations to the structure and function of many ecosystems across the United States. One approach for quantifying the level of pollution that would be harmful to ecosystems is the critical loads approach. The critical load is dei ned as the level of a pollutant below which no detrimental ecological effect occurs over the long term according to present knowledge.
The objective of this project was to synthesize current research relating atmospheric N deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The receptors that we evaluated included freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical, and (2) individual species, population, and community responses.
This report synthesizes current research relating atmospheric nitrogen (N) deposition to effects on terrestrial and aquatic ecosystems in the United States and to identify empirical critical loads for atmospheric N deposition. The report evaluates the following receptors: freshwater diatoms, mycorrhizal fungi and other soil microbes, lichens, herbaceous plants, shrubs, and trees. The main responses reported fell into two categories: (1) biogeochemical; and (2) individual species, population, and community responses. The range of critical loads for nutrient N reported for U.S. ecoregions, inland surface waters, and freshwater wetlands is 1 to 39 kg N ha-1 y-1. This range spans the range of N deposition observed over most of the country. The empirical critical loads for N tend to increase in the following sequence for different life forms: diatoms, lichens and bryophytes, mycorrhizal fungi, herbaceous plants and shrubs, trees
Arbuscular mycorrhizal inoculation has similar benefits to fertilization for Thuja occidentalis L. seedling nutrition and growth on peat soil over a range of pH: implications for restoration
Arbuscular mycorrhizal (AM) fungi are hypothesized to assist growth of northern white-cedar in acid peatlands, yet there is little direct evidence that they can provide sufficient resources, especially nitrogen (N), from unfertilized peat soils. Our objective was to determine mycorrhizal efficacy to support cedar growth and nutrient supply as part of a low-impact approach for ecological restoration of cedar in peatlands. We tested the effectiveness of AM inoculation in a greenhouse experiment in factorial combination with fertilization and liming. We also determined AM colonization rate in the different treatment combinations. We found that AM inoculation in the absence of fertilization significantly increased all growth parameters, phosphorus (P) concentrations, and N, P, and copper (Cu) content of the seedlings, and decreased N:P ratios. Fertilizer alone had a similar impact on plant growth and nutrient acquisition when compared to un-fertilized AM inoculation treatments. Liming alone was ineffective at increasing cedar growth and nutrient uptake. There were many interactions of AM inoculation with liming and fertilization. Specifically, the positive effect of AM inoculation on many growth and nutrition metrics was strongly reduced in the presence of fertilization, whereas the P benefit of mycorrhizas appeared to increase under liming. We conclude that addition of AM inoculation alone improved cedar growth and P acquisition, reducing the need for fertilizer and lime in peatlands. However, seedling N limitation might be a problem in strongly N-deficient peat soils
- …
