142 research outputs found

    Investigation Of An Inducible Nitric Oxide Synthase Gene (NOS2A) Polymorphism In A Multiple Sclerosis Population

    Get PDF
    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) affecting most commonly the Caucasian population. Nitric oxide (NO) is a biological signaling and effector molecule and is especially important during inflammation. Inducible nitric oxide synthase (iNOS) is one of the three enzymes responsible for generating NO. It has been reported that there is an excessive production of NO in MS concordant with an increased expression of iNOS in MS lesions. This study investigated the role of a bi-allelic tetranucleotide polymorphism located in the promoter region of the human iNOS (NOS2A) gene in MS susceptibility. A group of MS patients (n = 101) were genotyped and compared to an age- and sex-matched group of healthy controls (n = 101). The MS group was subdivided into three subtypes, namely relapsing-remitting MS (RR-MS), secondary-progressive MS (SP-MS) and primary-progressive MS (PP-MS). Results of a chi-squared analysis and a Fisher's exact test revealed that allele and genotype distributions between cases and controls were not significantly different for the total population (X 2 = 3.4, P genotype = 0.15; X 2 = 3.4, P allele = 0.082) and for each subtype of MS (P > 0.05). This suggests that there is no direct association of this iNOS gene variant with MS susceptibility

    A second major histocompatibility complex susceptibility locus for multiple sclerosis

    Get PDF
    Objective: Variation in the major histocompatibility complex (MHC) on chromosome 6p21 is known to influence susceptibility to multiple sclerosis with the strongest effect originating from the HLA-DRB1 gene in the class II region. The possibility that other genes in the MHC independently influence susceptibility to multiple sclerosis has been suggested but remains unconfirmed. Methods: Using a combination of microsatellite, single nucleotide polymorphism, and human leukocyte antigen (HLA) typing, we screened the MHC in trio families looking for evidence of residual association above and beyond that attributable to the established DRB1*1501 risk haplotype. We then refined this analysis by extending the genotyping of classical HLA loci into independent cases and control subjects. Results: Screening confirmed the presence of residual association and suggested that this was maximal in the region of the HLA-C gene. Extending analysis of the classical loci confirmed that this residual association is partly due to allelic heterogeneity at the HLA-DRB1 locus, but also reflects an independent effect from the HLA-C gene. Specifically, the HLA-C*05 allele, or a variant in tight linkage disequilibrium with it, appears to exert a protective effect (p = 3.3 × 10−5). Interpretation: Variation in the HLA-C gene influences susceptibility to multiple sclerosis independently of any effect attributable to the nearby HLA-DRB1 gene

    Variations in Suppressor Molecule CTLA-4 Gene Are Related to Susceptibility to Multiple Myeloma in a Polish Population

    Get PDF
    Various phenotype and functional T-cell abnormalities are observed in multiple myeloma (MM) patients. The aim of this study was to investigate the association between polymorphisms in the gene encoding cytotoxic T-lymphocyte antigen-4 (CTLA-4), a negative regulator of the T-lymphocyte immune response and susceptibility to multiple myeloma in a Polish population. Two hundred MM patients and 380 healthy subjects were genotyped for the following polymorphisms: CTLA-4c.49A>G, CTLA-4g.319C>T, CTLA-4g.*642AT(8_33), CT60 (CTLA-4g.*6230G>A), Jo31 (CTLA-4g.*10223G>T). Our study is the largest and most comprehensive evaluation to date of the association between genetic polymorphisms in the CTLA-4 molecule and multiple myeloma. It was found that CTLA-4c.49A>G[G], CT60[G], and Jo31[G] alleles were more frequently observed in MM patients than in controls (0.50 vs. 0.44, p = 0.03, 0.65 vs. 0.58, p = 0.04, and 0.63 vs. 0.57, p = 0.03, respectively). Moreover, the haplotype CTLA-4c.49A>G[G], CTLA-4g.319C>T[C], CTLA-4g.*642AT(8_33) [8], CT60[G], Jo31[G] including all susceptibility alleles increases the risk of MM about fourfold (OR: 3.79, 95%CI: 2.08–6.89, p = 0.00001). These findings indicate that genetic variations in the CTLA-4 gene play role in susceptibility to multiple myeloma and warrant further investigation through replication studies

    Polymorphism analysis of the CTLA-4 gene in paracoccidioidomycosis patients

    Get PDF
    The CTLA-4 protein is expressed in activated T cells and plays an essential role in the immune response through its regulatory effect on T cell activation. Polymorphisms of the CTLA-4 gene have been correlated with autoimmune, neoplastic and infectious illnesses. This work aimed to verify possible associations between single nucleotide polymorphisms (SNPs) in CTLA-4, -318C/T in the promoter and +49A/G in exon 1 and paracoccidioidomycosis (PCM) caused by Paracoccidioides brasiliensis. For this purpose, 66 chronic form PCM patients and 76 healthy controls had their allele, genotype and haplotype frequencies determined. The genetic admixture structure of the patients and controls was evaluated to eliminate ancestral bias. The comparison of frequencies indicated no significant differences between patients and controls that could link the SNPs to PCM. Groups were admixture matched with no difference observed in population ancestry inference, indicating that the absence of association between CTLA-4 polymorphisms and PCM could not be attributed to ancestral bias. This study showed that there was no association between the CTLA-4 SNPs -318 and +49 and the resistance or susceptibility to PCM

    Analysis of single nucleotide polymorphisms in the FAS and CTLA-4 genes of peripheral T-cell lymphomas

    Get PDF
    Angioimmunoblastic T-cell lymphoma (AILT) represents a subset of T-cell lymphomas but resembles an autoimmune disease in many of its clinical aspects. Despite the phenotype of effector T-cells and high expression of FAS and CTLA-4 receptor molecules, tumor cells fail to undergo apoptosis. We investigated single nucleotide polymorphisms (SNPs) of the FAS and CTLA-4 genes in 94 peripheral T-cell lymphomas. Although allelic frequencies of some FAS SNPs were enriched in AILT cases, none of these occurred at a different frequency compared to healthy individuals. Therefore, SNPs in these genes are not associated with the apoptotic defect and autoimmune phenomena in AILT

    Dysregulated Expression of Both the Costimulatory CD28 and Inhibitory CTLA-4 Molecules in PB T Cells of Advanced Cervical Cancer Patients Suggests Systemic Immunosuppression Related to Disease Progression

    Get PDF
    Cervical cancer (CC) occurs more frequently in women who are immunosuppressed, suggesting that both local and systemic immune abnormalities may be involved in the evolution of the disease. Costimulatory CD28 and inhibitory CTLA-4 molecules expressed in T cells play a key role in the balanced immune responses. There has been demonstrated a relation between CD28, CTLA-4, and IFN genes in susceptibility to CC, suggesting their importance in CC development. Therefore, we assessed the pattern of CD28 and CTLA-4 expression in T cells from PB of CC patients with advanced CC (stages III and IV according to FIGO) compared to controls. We also examined the ability of PBMCs to secrete IFN-gamma. We found lower frequencies of freshly isolated and ex vivo stimulated CD4 + CD28+ and CD8 + CD28+ T cells in CC patients than in controls. Loss of CD28 expression was more pronounced in the CD8+ T subset. Markedly increased proportions of CTLA-4+ T cells in CC patients before and after culture compared to controls were also observed. In addition, patients’ T cells exhibited abnormal kinetics of surface CTLA-4 expression, with the peak at 24 h of stimulation, which was in contrast to corresponding normal T cells, revealing maximum CTLA-4 expression at 72 h of stimulation. Of note, markedly higher IFN-gamma concentrations were shown in supernatants of stimulated PBMCs from CC patients. Conclusions: Our report shows the dysregulated CD28 and CTLA-4 expression in PB T cells of CC patients, which may lead to impaired function of these lymphocytes and systemic immunosuppression related to disease progression

    The complex genetics of multiple sclerosis: pitfalls and prospects

    Get PDF
    The genetics of complex disease is entering a new and exciting era. The exponentially growing knowledge and technological capabilities emerging from the human genome project have finally reached the point where relevant genes can be readily and affordably identified. As a result, the last 12 months has seen a virtual explosion in new knowledge with reports of unequivocal association to relevant genes appearing almost weekly. The impact of these new discoveries in Neuroscience is incalculable at this stage but potentially revolutionary. In this review, an attempt is made to illuminate some of the mysteries surrounding complex genetics. Although focused almost exclusively on multiple sclerosis all the points made are essentially generic and apply equally well, with relatively minor addendums, to any other complex trait, neurological or otherwise
    • …
    corecore