8 research outputs found

    The health potential of urban water: Future scenarios on local risks and opportunities

    Get PDF
    Although cities can be characterised as sources of economic, environmental and social challenges, they can also be part of the solution for healthy and sustainable societies. While most cities are situated close to water, whether inland waterways, lakes, or the sea, these blue spaces are not integrated into urban planning to their full potential and their public health impacts are not always recognised by planning authorities. Furthermore, cities face future challenges regarding climate change, socio-economic developments like tourism, urbanization, and rising social inequalities. The development of healthy blue spaces can support cities in their pursuit of ways to confront these challenges. Interdisciplinary and transdisciplinary analyses of the local impacts of these trends and promising interventions have been scarce to date. This study explores the use of such methodology by presenting experiences related to five European cities: Amsterdam, Barcelona, Plymouth, Tallinn and Thessaloniki, using an interactive and participative approach with local experts and stakeholders. Future scenarios have been developed based on the question: How can blue spaces contribute to a healthier city population, given the long term trends? The results highlight the importance of addressing the local context when seeking sustainable solutions for cities. The future scenarios deliver information that could serve as useful input for local planning processes

    The health potential of urban water: Future scenarios on local risks and opportunities

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordAlthough cities can be characterised as sources of economic, environmental and social challenges, they can also be part of the solution for healthy and sustainable societies. While most cities are situated close to water, whether inland waterways, lakes, or the sea, these blue spaces are not integrated into urban planning to their full potential and their public health impacts are not always recognised by planning authorities. Furthermore, cities face future challenges regarding climate change, socio-economic developments like tourism, urbanization, and rising social inequalities. The development of healthy blue spaces can support cities in their pursuit of ways to confront these challenges. Interdisciplinary and transdisciplinary analyses of the local impacts of these trends and promising interventions have been scarce to date. This study explores the use of such methodology by presenting experiences related to five European cities: Amsterdam, Barcelona, Plymouth, Tallinn and Thessaloniki, using an interactive and participative approach with local experts and stakeholders. Future scenarios have been developed based on the question: How can blue spaces contribute to a healthier city population, given the long term trends? The results highlight the importance of addressing the local context when seeking sustainable solutions for cities. The future scenarios deliver information that could serve as useful input for local planning processes.European Union Horizon 202

    Indicators to support healthy urban gardening in urban management.

    No full text
    Urban gardening is part of a trend towards more parks and green areas in cities, consumption of organic, locally grown products, and a closer relationship with one's own living environment. Our literature review shows that urban gardens provide opportunities for physical activity and allow people to consume homegrown fruit and vegetables. Urban gardens may also reduce stress levels of gardeners and improve social cohesion. In this way, they can help to prevent health problems. Good quality of urban soil and the functioning of soil ecosystems are indispensable prerequisites for these. We developed a framework that shows how ecosystem health and human health are interconnected in urban gardening, by placing it in the context of urban green space management and valuation. This study yields a set of indicators, which can be used to assess soil ecosystem services and health impacts. They may provide a basis for the evolving dialogue in decision-making processes and partnership activities in urban management. Recognizing the potential effects and discussing what is important to whom, might be enough to find synergies. Importantly, the initiators of urban gardens are often citizens, who seek support from other stakeholders. The social network established by gardens may contribute to health-enabling, cohesive communities involved with their living environment. To maximize health benefits, it is useful to make the urban gardens accessible to many people. This study suggests that urban gardens deserve a position in urban green space management as they may help to address societal challenges like urbanization, health and well-being in aging populations and climate adaptation

    Safer chemicals using less animals: kick-off of the European ONTOX project.

    Get PDF
    The 3Rs concept, calling for replacement, reduction and refinement of animal experimentation, is receiving increasing attention around the world, and has found its way to legislation, in particular in the European Union. This is aligned by continuing high-level efforts of the European Commission to support development and implementation of 3Rs methods. In this respect, the European project called "ONTOX: ontology-driven and artificial intelligence-based repeated dose toxicity testing of chemicals for next generation risk assessment" was recently initiated with the goal to provide a functional and sustainable solution for advancing human risk assessment of chemicals without the use of animals in line with the principles of 21st century toxicity testing and next generation risk assessment. ONTOX will deliver a generic strategy to create new approach methodologies (NAMs) in order to predict systemic repeated dose toxicity effects that, upon combination with tailored exposure assessment, will enable human risk assessment. For proof-of-concept purposes, focus is put on NAMs addressing adversities in the liver, kidneys and developing brain induced by a variety of chemicals. The NAMs each consist of a computational system based on artificial intelligence and are fed by biological, toxicological, chemical and kinetic data. Data are consecutively integrated in physiological maps, quantitative adverse outcome pathway networks and ontology frameworks. Supported by artificial intelligence, data gaps are identified and are filled by targeted in vitro and in silico testing. ONTOX is anticipated to have a deep and long-lasting impact at many levels, in particular by consolidating Europe's world-leading position regarding the development, exploitation, regulation and application of animal-free methods for human risk assessment of chemicals
    corecore