35 research outputs found

    High Variability in Outcomes of Two-Stage Exchange to Treat Periprosthetic Joint Infection

    Get PDF
    Introduction: Periprosthetic joint infection (PJI) is a challenging condition to manage with sobering morbidity and mortality.1,2 Treatment options range from simple irrigation and debridement with prosthetic retention to explantation and placement of a temporary cement spacer. Indictations for each option are unclear and non-uniform despite signi­cant efforts to understand the management outcomes. Until recently, a uniform de­nition of success was unavailable, thus clouding the discussion of treatment options. Two-stage exchange is currently considered the “gold-standard” in North America, yet an appropriate understanding of the actual success and ancillary effects of treatment is needed. With the advantage of an expert opinion de­ning success, this study was designed to understand the status of the current literature and the guidance it provides regarding two-stage exchange arthroplasty

    Carbon sequestration and biodiversity following 18 years of active tropical forest restoration

    Get PDF
    Vast areas of degraded tropical forest, combined with increasing interest in mitigating climate change and conserving biodiversity, demonstrate the potential value of restoring tropical forest. However, there is a lack of long-term studies assessing active management for restoration. Here we investigate Above-Ground Biomass (AGB), forest structure, and biodiversity, before degradation (in old-growth forest), after degradation (in abandoned agricultural savanna grassland), and within a forest that is actively being restored in Kibale National Park, Uganda. In 1995 degraded land in Kibale was protected from fire and replanted with native seedlings (39 species) at a density of 400 seedlings ha-1. Sixty-five plots (50 m × 10 m) were established in restoration areas in 2005 and 50 of these were re-measured in 2013, allowing changes to be assessed over 18 years. Degraded plots have an Above Ground Biomass (AGB) of 5.1 Mg dry mass ha-1, of which 80% is grass. By 2005 AGB of trees ≄10 cm DBH was 9.5 Mg ha-1, increasing to 40.6 Mg ha-1 by 2013, accumulating at a rate of 3.9 Mg ha-1 year-1. A total of 153 planted individuals ha-1 (38%) remained by 2013, contributing 28.9 Mg ha-1 (70%) of total AGB. Eighteen years after restoration, AGB in the plots was 12% of old-growth (419 Mg ha-1). If current accumulation rates continue restoration forest would reach old-growth AGB in a further 96 years. Biodiversity of degraded plots prior to restoration was low with no tree species and 2 seedling species per sample plot (0.05 ha). By 2005 restoration areas had an average of 3 tree and 3 seedling species per sample plot, increasing to 5 tree and 9 seedling species per plot in 2013. However, biodiversity was still significantly lower than old-growth forest, at 8 tree and 16 seedling species in an equivalent area. The results suggest that forest restoration is beneficial for AGB accumulation with planted stems storing the majority of AGB. Changes in biodiversity appear slower; possibly due to low stem turnover. Overall this restoration treatment is an effective means of restoring degraded land in the area, as can be seen from the lack of regeneration in degraded plots, which remain low-AGB and diversity, largely due to the impacts of fire and competition with grasses

    Use of bacterial whole-genome sequencing to investigate local persistence and spread in bovine tuberculosis

    Get PDF
    Mycobacterium bovis is the causal agent of bovine tuberculosis, one of the most important diseases currently facing the UK cattle industry. Here, we use high-density whole genome sequencing (WGS) in a defined sub-population of M. bovis in 145 cattle across 66 herd breakdowns to gain insights into local spread and persistence. We show that despite low divergence among isolates, WGS can in principle expose contributions of under-sampled host populations to M. bovis transmission. However, we demonstrate that in our data such a signal is due to molecular type switching, which had been previously undocumented for M. bovis. Isolates from farms with a known history of direct cattle movement between them did not show a statistical signal of higher genetic similarity. Despite an overall signal of genetic isolation by distance, genetic distances also showed no apparent relationship with spatial distance among affected farms over distances <5 km. Using simulations, we find that even over the brief evolutionary timescale covered by our data, Bayesian phylogeographic approaches are feasible. Applying such approaches showed that M. bovis dispersal in this system is heterogeneous but slow overall, averaging 2 km/year. These results confirm that widespread application of WGS to M. bovis will bring novel and important insights into the dynamics of M. bovis spread and persistence, but that the current questions most pertinent to control will be best addressed using approaches that more directly integrate WGS with additional epidemiological data

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Decreased Health-Related Quality of Life in Women With Breast Cancer Is Associated With Poor Sleep

    No full text
    This study examined the longitudinal relationship between health-related quality of life (HR-QOL) and subjective and objective sleep quality in 166 women with newly diagnosed stage I-III breast cancer who were scheduled to receive ≄4 cycles of adjuvant/neoadjuvant chemotherapy. HR-QOL was assessed with the Medical Outcomes Study-Short Form Physical Component Scale and Mental Component Scale scores. Subjective sleep was assessed with the Pittsburgh Sleep Quality Index (PSQI); objective sleep was measured with actigraphy. Data were collected before starting chemotherapy and during the last week of cycle 4 of chemotherapy. Patients reported poor HR-QOL and poor sleep quality before and during chemotherapy. Short sleep time and long naps were recorded at both time points. The Mental Component score was related to reports of poor sleep but not to recorded sleep, worse Physical Component scores were associated with reports of poor sleep and less recorded nap time, suggesting sleep plays an important role in cancer patients’ HR-QOL

    How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists

    Full text link
    1. Plant growth is a fundamental ecological process, integrating across scales from physiology to community dynamics and ecosystem properties. Recent improvements in plant growth modeling have allowed deeper understanding and more accurate predictions for a wide range of ecological issues, including competition among plants, plant-herbivore interactions and ecosystem functioning. 2. One challenge in modeling plant growth is that, for a variety of reasons, relative growth rate (RGR) almost universally decreases with increasing size, though traditional calculations assume that RGR is constant. Nonlinear growth models are flexible enough to account for varying growth rates. 3. We demonstrate a variety of nonlinear models that are appropriate for modeling plant growth and, for each, show how to calculate function-derived growth rates, which allow unbiased comparisons among species at a common time or size. We show how to propagate uncertainty in estimated parameters to express uncertainty in growth rates. Fitting nonlinear models can be challenging, so we present extensive worked examples and practical recommendations, all implemented in R. 4. The use of nonlinear models coupled with function-derived growth rates can facilitate the testing of novel hypotheses in population and community ecology. For example, the use of such techniques has allowed better understanding of the components of RGR, the costs of rapid growth, and the linkage between host and parasite growth rates. We hope this contribution will demystify nonlinear modeling and persuade more ecologists to use these techniques
    corecore