559 research outputs found

    Face Image Retrieval with Landmark Detection and Semantic Concepts Extraction

    Get PDF
    This thesis proposes various novel approaches for improving the performances of automatic facial landmarks detection system based on the concept of pictorial tree structure model. Furthermore, a robust glasses landmark detection system is also proposed as glasses are commonly used. These proposed approaches are employed to develop an automatic semantic based face images retrieval system. The experiment results demonstrate significant improvements of all the proposed approaches towards accuracy and efficiency

    Evaluation of pre-analytical factors affecting plasma DNA analysis.

    Get PDF
    Pre-analytical factors can significantly affect circulating cell-free DNA (cfDNA) analysis. However, there are few robust methods to rapidly assess sample quality and the impact of pre-analytical processing. To address this gap and to evaluate effects of DNA extraction methods and blood collection tubes on cfDNA yield and fragment size, we developed a multiplexed droplet digital PCR (ddPCR) assay with 5 short and 4 long amplicons targeting single copy genomic loci. Using this assay, we compared 7 cfDNA extraction kits and found cfDNA yield and fragment size vary significantly. We also compared 3 blood collection protocols using plasma samples from 23 healthy volunteers (EDTA tubes processed within 1 hour and Cell-free DNA Blood Collection Tubes processed within 24 and 72 hours) and found no significant differences in cfDNA yield, fragment size and background noise between these protocols. In 219 clinical samples, cfDNA fragments were shorter in plasma samples processed immediately after venipuncture compared to archived samples, suggesting contribution of background DNA by lysed peripheral blood cells. In summary, we have described a multiplexed ddPCR assay to assess quality of cfDNA samples prior to downstream molecular analyses and we have evaluated potential sources of pre-analytical variation in cfDNA studies

    A robust detector for rolling element bearing condition monitoring based on the modulation signal bispectrum and its performance evaluation against the Kurtogram

    Get PDF
    Envelope analysis is a widely used method for rolling element bearing fault detection. To obtain high detection accuracy, it is critical to determine an optimal frequency narrowband for the envelope demodulation. However, many of the schemes which are used for the narrowband selection, such as the Kurtogram, can produce poor detection results because they are sensitive to random noise and aperiodic impulses which normally occur in practical applications. To achieve the purposes of denoising and frequency band optimisation, this paper proposes a novel modulation signal bispectrum (MSB) based robust detector for bearing fault detection. Because of its inherent noise suppression capability, the MSB allows effective suppression of both stationary random noise and discrete aperiodic noise. The high magnitude features that result from the use of the MSB also enhance the modulation effects of a bearing fault and can be used to provide optimal frequency bands for fault detection. The Kurtogram is generally accepted as a powerful means of selecting the most appropriate frequency band for envelope analysis, and as such it has been used as the benchmark comparator for performance evaluation in this paper. Both simulated and experimental data analysis results show that the proposed method produces more accurate and robust detection results than Kurtogram based approaches for common bearing faults under a range of representative scenarios

    Catecholamine up-regulates MMP-7 expression by activating AP-1 and STAT3 in gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stress, anxiety and depression can cause complex physiological and neuroendocrine changes, resulting in increased level of stress related hormone catecholamine, which may constitute a primary mechanism by which physiological factors impact gene expression in tumors. In the present study, we investigated the effects of catecholamine stimulation on MMP-7 expression in gastric cancer cells and elucidated the molecular mechanisms of the up-regulation of MMP-7 level by catecholamine through an adrenergic signaling pathway.</p> <p>Results</p> <p>Increased MMP-7 expression was identified at both mRNA and protein levels in the gastric cancer cells in response to isoproterenol stimulation. Ξ²2-AR antigonist effectively abrogated isoproterenol-induced MMP-7 expression. The activation of STAT3 and AP-1 was prominently induced by isoproterenol stimulation and AP-1 displayed a greater efficacy than STAT3 in isoproterenol-induced MMP-7 expression. Mutagenesis of three STAT3 binding sites in MMP-7 promoter failed to repress the transactivation of MMP-7 promoter and silencing STAT3 expression was not effective in preventing isoproterenol-induced MMP-7 expression. However, isoproterenol-induced MMP-7 promoter activities were completely disappeared when the AP-1 site was mutated. STAT3 and c-Jun could physically interact and bind to the AP-1 site, implicating that the interplay of both transcriptional factors on the AP-1 site is responsible for isoproterenol-stimulated MMP-7 expression in gastric cancer cells. The expression of MMP-7 in gastric cancer tissues was found to be at the site where Ξ²2-AR was overexpressed and the levels of MMP-7 and Ξ²2-AR were the highest in the metastatic locus of gastric cancer.</p> <p>Conclusions</p> <p>Up-regulation of MMP-7 expression through Ξ²2-AR-mediated signaling pathway is involved in invasion and metastasis of gastric cancer.</p

    The diagnostic analysis of the planet bearing faults using the torsional vibration signal

    Get PDF
    Β© 2019 Elsevier Ltd This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planet bearing fault detection. The inner race of the planet bearing is connected to the planet carrier and its outer race is connected to the planet gear bore hole. When moving, the planet bearing not only spins around the planet gear axis, but also revolves about the sun gear axis. This rotating mechanism poses a challenge for the condition monitoring of the planet bearing because of the variant vibration transfer paths. The transducer mounted on the carrier arm measuring the torsional vibration is theoretically free from this modulation effect and it is used in this research to extract the diagnostic information from the torsional vibration. A 34 degrees of freedom planetary gear lumped-parameter model with detailed planet bearing model was developed to obtain the dynamic response. The planet bearing was modelled by 5 degrees of freedom, with 2 degrees of freedom from the outer race, 2 degrees of freedom from the inner race and one degree of freedom from the sprung-mass. The variations of the sun-planet and ring-planet mesh stiffnesses were evaluated by the finite element method and the variation of the planet bearing stiffness was evaluated by the Hertzian contact theory. The localized faults on the planet bearing inner race, outer race and the rolling element were created mathematically and then these faults were incorporated into the planetary gear model to obtain the faulted vibration signal. The linear prediction method and the minimum entropy deconvolution method were used to enhance the planet bearing signal and then the amplitude demodulation results were analysed. It was found that the carrier arm instantaneous angular speed was an effective alternative approach for planet gear condition monitoring

    What does PD-L1 positive or negative mean?

    Full text link
    Expression of the programmed death-1 (PD-1) ligand 1 (PD-L1) is used to select patients and analyze responses to anti–PD-1/L1 antibodies. The expression of PD-L1 is regulated in different ways, which leads to a different significance of its presence or absence. PD-L1 positivity may be a result of genetic events leading to constitutive PD-L1 expression on cancer cells or inducible PD-L1 expression on cancer cells and noncancer cells in response to a T cell infiltrate. A tumor may be PD-L1 negative because it has no T cell infiltrate, which may be reversed with an immune response. Finally, a tumor that is unable to express PD-L1 because of a genetic event will always be negative for PD-L1 on cancer cells

    Design Constraints on a Synthetic Metabolism

    Get PDF
    A metabolism is a complex network of chemical reactions that converts sources of energy and chemical elements into biomass and other molecules. To design a metabolism from scratch and to implement it in a synthetic genome is almost within technological reach. Ideally, a synthetic metabolism should be able to synthesize a desired spectrum of molecules at a high rate, from multiple different nutrients, while using few chemical reactions, and producing little or no waste. Not all of these properties are achievable simultaneously. We here use a recently developed technique to create random metabolic networks with pre-specified properties to quantify trade-offs between these and other properties. We find that for every additional molecule to be synthesized a network needs on average three additional reactions. For every additional carbon source to be utilized, it needs on average two additional reactions. Networks able to synthesize 20 biomass molecules from each of 20 alternative sole carbon sources need to have at least 260 reactions. This number increases to 518 reactions for networks that can synthesize more than 60 molecules from each of 80 carbon sources. The maximally achievable rate of biosynthesis decreases by approximately 5 percent for every additional molecule to be synthesized. Biochemically related molecules can be synthesized at higher rates, because their synthesis produces less waste. Overall, the variables we study can explain 87 percent of variation in network size and 84 percent of the variation in synthesis rate. The constraints we identify prescribe broad boundary conditions that can help to guide synthetic metabolism design

    Resting-State Brain Activity in Adult Males Who Stutter

    Get PDF
    Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI), few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF), region of interest (ROI)-based functional connectivity (FC) and independent component analysis (ICA)-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN) in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN) and in the connections between them
    • …
    corecore