
School of Electrical Engineering and Computing
Department of Computing

Face Image Retrieval with Landmark Detection and
Semantic Concepts Extraction

Antoni Liang

This thesis is presented for the Degree of
Doctor of Philosophy

of

Curtin University

May 2017



To the best of my knowledge and belief this thesis contains no material previously

published by any other person except where due acknowledgement has been made.

This thesis contains no material which has been accepted for the award of any

other degree or diploma in any university.

Antoni Liang Date

ii



Abstract

Automatic identity authentication via biometric verification has been used in a large num-

ber of applications, particularly on security systems. Biometric refers to a technology

where human unique physical/biological ”features” are extracted and analyzed to distin-

guish an individual’s identity among a large group of people. Despite the reliable accuracy,

obtaining features such as DNA, fingerprints, and iris is challenging because it requires

exclusive devices and participants’ cooperation to engage with the devices which leads

to a high cost and inconvenience to people. However, facial features do not have these

limitations since it can be extracted from a photograph without the subjects’ knowledge

and the vast development of image-acquisition devices such as surveillance camera and

mobile phone leads to an easy access to capture a digital image. This is why applications

for automatic face detection/landmarking/recognition are widely popular.

Despite the vast development of facial landmarks detection approaches, most of them

emphasize on the application of face recognition or facial expressions recognition with only

limited amount of landmarks. Such amount is insufficient for describing the geometric

features of facial components such as the shape of the eye. Therefore, semantic-based

face application is not feasible in this case since they require a large amount of facial

landmarks. The aim of this thesis is to enhance the performances of the frontal facial

landmarking system in various ways for the practical application on semantic-based face

images retrieval. We proposed several novel approaches based on the state-of-the-art

pictorial-tree-structure face models.

First, we propose a dense face model the AR model via restructuring a face model ar-

chitecture with higher density of landmarks information. We emphasize on the crucial

components such as eyebrows, eyes, nose and mouth. This model improves the detection

accuracy and provides better geometric features. Secondly, we propose the Multi Reso-

lutions (MR) landmarking models to detect facial landmarks on low resolution faces as

small as 30x30 pixels. We achieved this by proposing an adaptive landmarks scheme for

selecting proper facial landmark structure and preserving important landmarks on various

face scales. The experiments reveal the high performance on high resolution images and

stability on low resolution images. Thirdly, we proposed the lightweight Tree-structured

Filter Model (TFM) to filter false face detections from the Viola Jones face detector.

Additionally, we combine the Viola Jones face detector, TFM and MR models in an in-

tegrated system for uncontrolled environment where multiple faces might be present in
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the same image on various resolutions. The proposed TFM assists reducing the false face

detection rate while maintaining satisfactory true detection rate. Fourth, we extend the

utility of pictorial-tree-structure models to glasses/spectacles as the glasses model to

detect its presence and remove it via image reconstruction approaches, the NLCTV in-

painting technique and SFDAE Deep Learning model. The glasses presence is considered

as one of the facial semantic features. The experiment shows that the proposed glasses

model is able to achieve significantly high glasses detection rate along with the corre-

sponding landmarks. Furthermore, our proposed glasses removal system improves both

facial recognition and verification rate significantly. Lastly, we evaluate the practicality

of our proposed models by investigating the problem of semantic-based face images

retrieval. For such purpose, we first propose a component-based AR model to further

improve the performance of the AR model. Then, we utilize the automatically retrieved

landmarks to define facial features such as the shape of facial components and glasses

presence. We derive some benchmark samples, so we are able to apply semantic mapping

for each face as semantic features for face images retrieval. Our experiment demonstrates

the feasibility of utilizing semantic features for face images retrieval.
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Chapter 1

Introduction

Human face is considered as one of the most popular biometric information of a person

(Zhao et al., 2003). Unlike other biometrics such as fingerprint and iris, face images can be

captured unnoticed without individual’s cooperation. This makes it much easier to collect

large amount of data on face images. This is also supported by the vast development

of image-acquisition devices such as surveillance cameras (e.g Closed-Circuit Television

(CCTV) camera) and portable devices (e.g mobile phone). Some possible field applications

include but not limited to surveillance/law enforcement, entertainment, and information

security.

Human face is an abstract and complex feature containing a vast amount of information

for various purposes. From the face, we can learn the identity of the person (face recog-

nition/verification), facial expressions/emotions, or even the intention based on the gaze.

One of the practical applications is the face image retrieval where we retrieve images con-

taining the face(s) of the query subject. Some of the recent developments were proposed

by Conilione and Wang (2012), Li et al. (2015), Arandjelovic (2016), and Bhattarai et al.

(2016). However, before we can extract all these information from the face, we have to

get the answer to the questions: ”Is there any face in this image? If yes, where are they?

How many are there?”. The answers for all these problems are addressed in the field of

Face Detection. According to Zhang and Zhang (2010), one of the most popular face

detection approaches is the Viola and Jones face detector (Viola and Jones, 2004) due

to its efficient and robust performance. It is the result of combination of a novel image

representation integral image, Haar features (Papageorgiou et al., 1998), and Adaboost

learning algorithm (Freund and Schapire, 1995) in a cascade structure framework.

Detecting locations of the faces in an image is not always sufficient in many applications.

Usually, we need supplementary information such as the location of facial components (e.g

eyes, nose, mouth). This scenario appears on face recognition. Although some techniques

process the face region holistically (Liu and Wechsler, 2000; Li and Lu, 1999; Bartlett,

2001), other approaches require local features from the facial components (Okada et al.,

1998; Nefian and Hayes III, 1998; Lawrence et al., 1997). Some other techniques even

combine both holistic and local features as hybrid approaches (Huang et al., 2003; Penev
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and Atick, 1996; Lanitis et al., 1995). Therefore, it is necessary to process the face images

further to extract these local features. This problem is usually known as the Facial

Landmarking or Facial Landmarks Detection (Çeliktutan et al., 2013). It is defined

as the process to automatically localize particular characteristic points/landmarks on faces,

which is a necessary phase to many face processing applications. However, this task is

proven to be challenging due to various factors such as face poses, facial expressions,

illumination and occlusions. All the techniques for extracting facial landmarks from face

images are usually divided into two categories: texture-based and model-based. Some of

the recent examples are (Valstar et al., 2010; Ding and Martinez, 2010; Akakin and Sankur,

2007) for texture-based and (Zhu and Ramanan, 2012a; Belhumeur et al., 2013; Milborrow

and Nicolls, 2008) for model-based. According to Çeliktutan et al. (2013), the model-based

techniques usually perform better than the texture-based techniques. Additionally, there

are also some techniques specifically designed for 3D faces such as (Nair and Cavallaro,

2009; Dibeklioglu et al., 2008; Akagunduz and Ulusoy, 2007). However, 3D faces are not

the research focus of this thesis.

Among all the facial landmarking techniques, the one that stands out the most is the

technique proposed by Zhu and Ramanan (2012a) due to its capability to perform face de-

tection, facial landmarking and pose estimation simultaneously with reliable performance.

Therefore, we utilize the concept of pictorial-tree-structured face models proposed in (Zhu

and Ramanan, 2012a) as the framework foundation for all the proposed approaches in this

thesis.

1.1 Research Gaps and Aims

After conducting in-depth investigations on the literature review, we discovered a few

research gaps to be addressed as follows:

1. Many facial landmarks detection approaches perform quite well in localizing the

landmarks on facial components. However, the amount of detected landmarks are

usually restricted to the intended applications (Çeliktutan et al., 2013). For instance,

face recognition might only need approximately 20-30 landmarks just to enclose

the facial components in a bounding box. The more complex tasks such as facial

expressions understanding and facial animation might need up to 60-80 landmarks

for high accuracy. Normally, facial landmarks detection approaches do not extract

much higher amount of landmarks due to the extra computational cost. However, the

application on semantic-based face images retrieval will need much more landmarks
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to derive complex features such as the shape of the eyes (e.g (Conilione and Wang,

2012)). As far as we know, there is no facial landmarks detector designed for this

particular problem. Most semantic-based face images retrieval frameworks rely on

manually-assigned facial landmarks or facial landmarks detected with low amount

of landmarks to derive only very basic geometric features. This is why we want to

develop a facial landmarks detector with significantly large number of landmarks

and better accuracy.

2. Face images might come in various resolutions in the image. While high resolution

faces usually do not pose any problem, the low resolution faces might cause a problem

with its limited information. Some facial landmarks detector approaches can still

be applied on low resolution faces but with the same amount of landmarks. We

believe it is not a good idea to crumple high amount of landmarks on the small

faces (e.g 30x30) as it might disrupt the structure of the landmarks. There are also

facial landmarks approaches which are not able to perform on small faces due to the

difference on features between large faces and small faces. This is why we want to

develop face models which can extract facial landmarks on various face resolutions

accordingly with proper structure and amount of landmarks.

3. The Viola Jones face detector (Viola and Jones, 2004) is able to detect faces efficiently

with high face detection rate. However, our observation discovers that their approach

is still susceptible to large amounts of false detection in uncontrolled environment.

Even though the face models proposed by Zhu and Ramanan (2012a) have been

proven to have better face detection performance than the Viola Jones face detector,

the computational cost is far from real-time due to its simultaneous facial landmarks

detection process. This is why we want to develop a new technique which can

perform with high face detection rate and low false detection in relatively short time

in uncontrolled environment.

4. In the context of semantic-based face images retrieval, facial components such as

eyebrows, eyes, nose and mouth are not the only semantic features we can extract

from a face. The presence of the glasses can also be considered as the main com-

ponent of the face due to its high usage among people for either visual problems or

fashion as mentioned by Gao et al. (2008). All the current facial landmarks detector

we are aware of never consider to detect the glasses. This is why we want to develop

a novel tree-structure model for glasses landmarks detection. Furthermore, since the

presence of glasses affect the facial recognition performance negatively (Righi et al.,

2012), we also propose a framework to remove the presence of glasses to improve

both facial recognition and verification performance.
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1.2 Thesis Structure and Contributions

The list below briefly describes the content of each chapter in this thesis along with its

contributions (Figure 1.1).

• Chapter 2: We introduce some preliminary knowledge related to our proposed

approaches in this thesis. We begin with introducing the concept of pictorial-tree-

structure face models (Zhu and Ramanan, 2012a) along with its gradient-based HOG

features (Dalal and Triggs, 2005). It is then followed by the explanation of the widely-

used Viola Jones face detector (Viola and Jones, 2004). Furthermore, two state-of-

the-art image reconstruction approaches, the NLCTV inpainting (Duan et al., 2015)

and SFDAE Deep Learning model (Pathirage et al., 2015) are explained. Moreover,

some commonly used face recognition techniques: the PCA (Turk and Pentland,

1991), LDA (Belhumeur et al., 1997), and SRC (Wright et al., 2009) are described

in detail. Finally, we present brief descriptions and images samples for all facial/non-

facial images database used in this thesis.

• Chapter 3: We propose the novel high-density frontal face models called the AR

model. We design a new face structure emphasized heavily on eyebrows, eyes, nose,

and mouth. This model is able to detect 130 facial landmarks, almost twice as many

as the previous state-of-the-art pictorial-tree-structure face models Independent-1050

(Zhu and Ramanan, 2012a). The advantage of the large amount of facial landmarks

allows us to describe better semantic features of facial components. Experimental

results reveal the significant improvement on both accuracy and detection rate on

fiducial points achieved by the AR model against some other state-of-the-art facial

landmarking techniques. Additionally, it also shows higher accuracy on defining basic

semantic features on facial components. Lastly, we conduct a full investigation on

the impact of various colour spaces on facial landmarks detection with our proposed

AR model.

• Chapter 4: We present the Multi Resolutions (MR) face models for performing

facial landmarks detection on low resolution faces as small as 30x30 on which the

predecessor state-of-the-art face models Share-146 (Zhu and Ramanan, 2012a) would

fail. For the purpose of assisting the face models training, we design an automatic

adaptive landmark scheme for facial landmarks selection on various resolution

levels of the face. This allows us to train face models on any resolution with suffi-

cient amount of landmarks. Furthermore, in order to utilize the MR models more

effectively, we employ the Viola Jones face detector (Viola and Jones, 2004) prior to
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facial landmarking phase. This setup let us decide which face model scale to apply

automatically. Experiments are carried out on faces with various scale levels with a

few state-of-the-art techniques. The results emphasize the robust performance of our

proposed MR models on high resolution and stability on low resolution especially in

the presence of beard and hair.

• Chapter 5: We propose a novel face detector method with the Tree-structured

Filter Model (TFM). This model filters all the face regions detected by the Viola

Jones face detector (Viola and Jones, 2004) to remove most false detections. In order

to avoid high overhead from the additional processing, TFM is designed to be light-

weight by training it on the low resolution faces just sufficient to depict the intuitive

description of human faces. The experiments are conducted on an uncontrolled

face database which reveals the advantage of TFM in terms of computation speed

and detection rate compared to the Viola Jones face detector and another state-

the-art face detection model. We also design a complete integrated framework of

facial landmarking system by combining it with the previously proposed MR models.

More experiments reveal that the integrated system performs better on uncontrolled

environment and not significantly affected by the size of the image.

• Chapter 6: We investigate the feasibility of utilizing the concept of pictorial tree

structure for proposing novel glasses models for automatic detection of glasses

presence along with its corresponding landmarks on face images. We address this

problem by training the tree-structure model on 100 glasses images with the corre-

sponding 39 manual landmarks. The landmarks are created systematically to ensure

the consistency and accuracy of the landmarks. We integrated this model with two

state-of-the-art image reconstruction approaches NLCTV inpainting (Duan et al.,

2015) and SFDAE Deep Learning model (Pathirage et al., 2015) as a novel double-

layers glasses filter framework to automatically remove the glasses in order to improve

the facial recognition and verification rate. Our experiments reveal the robustness

of our proposed glasses models on detection rate on various face databases. Further-

more, it also confirms the significant improvement caused by glasses removal on face

recognition and verification.

• Chapter 7: We develop an automatic semantic-based face images retrieval

integrated with the proposed AR model and glasses models to derive the semantic

features from face images. We make an adjustment on AR model to be a component-

based face model in order to further improve its accuracy and less influenced by

slight facial expressions. The new proposed AR model consists of three independent

partial face structures: (1) left eyebrows and eyes (2) right eyebrows and eyes (3)
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lower region on the face including nose, mouth, and chin. Thus, we can automatically

extract all the facial landmarks from all the face images in the gallery dataset and

derive the semantic features (e.g shape and size) from them. Furthermore, we provide

a wide range of semantic benchmarks chosen manually to define some categories

for each semantic feature (e.g narrow, medium, and widely-opened eye). These

benchmarks are used to apply semantic mapping for all extracted semantic features

on each face. This process will assign the ”membership degree” as features for each

face. The advantage of this approach is that it is efficient and only involves small-

scale data assigned manually by hand. The experiment results reveal the practicality

of semantic features for face images retrieval with high success rate of finding the

correct identity of the query subject.

• Chapter 8: The conclusion of the whole thesis and some potential future direc-

tions are addressed.
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Figure 1.1: Visual cues of the remaining chapters. Starting from the top moving clockwise,

we briefly discuss about the related approaches/techniques and relevant databases used in

our experiments in Chapter 2. Our research is mainly focused on pictorial-tree-structured

models to detect landmarks on facial region with various implementations. In Chapter 3,

we proposed robust frontal face models with higher accuracy and condensed landmarks in

order to extract semantic features from the human faces. We further expand the capability

of our face models in Chapter 4 to cover various resolutions as low as 30x30. In order

to have an efficient facial landmarks detection framework, we propose light-weight face

models for fast initial face detection in Chapter 5. In Chapter 6, we propose novel glasses

landmarking models as facial glasses can be considered as a part of the face and its presence

is highly common. Lastly, we apply our proposed face and glasses models to extract facial

semantic features and conduct facial images retrieval in Chapter 7. The conclusion and

future directions are summarized in Chapter 8
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Chapter 2

Background

In this chapter, background knowledge and related techniques used in this thesis are

presented. All the databases involved on all our experiments are also described. The

contents are summarized at the end of this chapter.

2.1 Pictorial-Tree-Structured Face Models

The foundation of the works presented in this thesis is based on the state-of-the-art ap-

proach proposed by Zhu and Ramanan (2012a). Their approach was designed to accom-

plish multiple tasks in one integrated pictorial-tree-structured-based framework. These

tasks are the face detection, face pose estimation, and face landmarks detection. This

means that there are no prior information such as location of the faces or the amount of

the faces in the image required. This framework can be applied on any images without

any restriction (uncontrolled environment).

The robustness and flexibility of the approach come from their proposed face models.

Each face model is derived from a mixture of facial landmarks connected as a pictorial

tree structure (Felzenszwalb and Huttenlocher, 2005) which is suitable for preserving the

global elastic formation of the faces. The feature extracted from each facial landmark is the

Histogram of Oriented Gradients (HOG) (Dalal and Triggs, 2005). These features describe

the orientation of edges on a local region in an image by calculating the distribution of

intensity gradients.

2.1.1 Pictorial Structure

The original concept and framework of pictorial structure models were introduced by

(Fischler and Elschlager, 1973). This was further developed by (Felzenszwalb and Hutten-

locher, 2005) for the purpose of recognizing any general object by conducting experiments

on human faces and bodies recognition. Intuitively, the idea of pictorial structure is that
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an object is represented by a collection of parts of interest (features) connected in a par-

ticular framework/structure which represents the relation between them. To get a better

intuitive idea, refer to an example in Figure 2.1.

Figure 2.1: These are 2D triangle shapes in various orientations, sizes, scales/ratios, and

colours. Even with these large varieties of deformation, people still recognize the triangle

shape.

This is a collection of 2D triangle shapes in various deformations. Despite the enormous

number of varieties of triangles, we still can easily recognize the shape. The reason is

not because we memorize all possibilities of triangles, but because we have learned the

fundamental characteristics of a triangle. We observed that each shape in Figure 2.1 is a

closed shape with only 3 corners connected via 3 intersecting lines. In this scenario, the

corners of the triangles are the ”parts” and the ”relation” between them are represented

by the three straight lines composing the shape. Another more sophisticated example is

the pictorial structure on human (standing straight) as can be seen in Figure 2.2.

A human body can be divided into multiple body ”parts” (head, torso, upper arm, lower

arm, upper leg, lower leg). The presence of each part can be described by particular

features (e.g colour, shape, edges). A ”relation” can be defined on these body parts.
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Figure 2.2: A pictorial structure of a standing human. The whole body can be represented

by ten parts: head, torso, 2 upper arms, 2 lower arms, 2 upper legs, 2 lower legs.

For instance, we can intuitively describe that the human head is adjacent to torso (close

distance) and located on the upper part (relative position). These configurations of parts

definition and the corresponding relationship can describe a presence of human in general.

The formal definition of a pictorial structure can be expressed as a undirected graph

G = (V,E). V = v1, v2, ..., vn represents the ”parts” of an object. Each part has a

corresponding ”configuration” variable L = l1, l2, ..., ln. Normally, L just represents a

location (x, y) of a part vi in the image. However, additional information can be added

such as the orientation. Each direct connection between two parts is represented by an

edge (vi, vj) ∈ E.

Once the object model has been learned, the matching can be regarded as a minimization

problem of the cost function between the model and a region in the image. There are two

main parts in the cost function. First, it evaluates the degree of mismatch between part

vi at location li in the image with a function mi(li). Second, it measures the degree of

deformation between parts vi and vj with a function dij(li, lj). The matching formula can

be written as:
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L = arg min
L

=

 n∑
i=1

mi(li) +
∑

(vi,vj)∈E

dij(li, lj)

 (2.1)

2.1.2 Histogram of Oriented Gradients (HOG)

The face models proposed by (Zhu and Ramanan, 2012a) demand a feature which can

describe the local region of each facial landmark well. One of the suitable features is the

one based on the concept of orientation histograms developed in the early age (McConnell,

1986; Freeman and Roth, 1995; Freeman et al., 1996). This concept reached a significant

performance improvement by involving local spatial histogram and normalization in image

descriptor SIFT (Scale Invariant Feature Transform) (Lowe, 2004). Zhu and Ramanan

adopted the HOG (Histograms of Oriented Gradients) features by (Dalal and Triggs,

2005) as it depicts the appearance and geometric information well. For instance, each

facial landmark on the chin region represents a local silhouette along the jawline. This is

achieved by exploiting the information on the magnitudes and orientations/directions of

the intensity gradients distribution.

Figure 2.3: (a) Original image (b) Rectangular partitions of the image called ”cells”.
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In order to get a better intuitive concept of HOG features extraction, a simple simulation

is briefly explained in this section. Assuming we have a colour image I ∈ Z180x210x3. The

image is then divided into rectangular partitions called ”cells” as can be seen in Figure 2.3.

The intensity gradients is extracted for each cell. The way to achieve this is by measuring

the pixel values difference on the horizontal (dx) and vertical (dy) directions. Refer to

Figure 2.4 for the calculation done by applying a centered mask for each direction. As

a result, it is feasible to measure the magnitude mag =
√

(dx)2 + (dy)2 and orientation

θ = arctan(
dy
dx

). If the image contains multiple colour channels (e.g RGB (Red, Green,

Blue)), then the calculation is done separately on each channel for each pixel. The one

with the largest magnitude is chosen.

Figure 2.4: Pixel intensity differences can be calculated by applying masks on both hori-

zontal (dx) and vertical (dy) directions. Both values can be used to compute the magni-

tude/strength and the orientation/angle (θ) of the gradients.

All the magnitudes and orientations are accumulated to create a small-scale histogram

on various angles. However, this might lead to a huge dimension of data. For instance,

even after rounding to the nearest integer, there are still 180 angles to be considered

(1◦, 2◦, 3◦, ..., 180◦). In order to prevent the abundance of data dimension, the orientation

has to be quantized into evenly space based on the number of spatial/orientation bins.

(Dalal and Triggs, 2005) used 9 orientation bins which divides the angles with the incre-

ment of 180
9 = 20◦ degrees (20◦, 40◦, 60◦, ..., 180◦). If the extracted orientation does not

fall exactly into one of these angles (e.g 45◦), then the magnitude is linearly interpolated

between the neighboring bin centers (e.g 75% into 40◦ and 25% into 60◦).

Finally, the value of multiple cells can be combined into a block which represents a larger

comprehensive representation of the HOG features (Figure 2.5). Describing the whole

image can be done by concatenating all the blocks (data dimension = amount of blocks *

amount of cells per block * spatial/orientation bins).
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Figure 2.5: Examples of blocks with 2x2 cells. Block 1 covers the edge of the roof with 2

distinct orientations which is shown as 2 lines in the corresponding HOG feature. Block

2 only contains 1 orientation.
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2.1.3 Zhu and Ramanan Face Models

Figure 2.6: 6 mixtures of tree structure for 6 variations of facial expressions (neutral, smile,

surprise, squint, disgust, scream) from CMU multiPIE database (Gross et al., 2010). ( c©
2014, IEEE)

Zhu and Ramanan (2012a); Yang and Ramanan (2011) extend and apply the idea of

pictorial structure further to detect the presence of human faces and provide the facial

landmarks based on the optimal configuration L. Their face models consist of m mixtures

of tree structure to represent various poses and facial expressions. For instance, 6 mixtures

of tree structure are needed to express 6 facial expressions (Figure 2.6). The reason of

employing tree architecture is because it can be optimized through dynamic programming

(Felzenszwalb and Huttenlocher, 2005). Let Tm = (Vm, Em) indicate a pictorial tree

structure of mixture m with a collection of ”parts” V and the corresponding ”relations” E

(similar concept described in chapter 2.1.1). Each part is accompanied with a configuration

li = (xi, yi) which specifies pixel location of part i. All configurations are defined as

L = {l1, l2, ..., li : i = |V |}. They compute the score of the configuration matching in an

image I as follows:

Score(I, L,m) = Appearancem(I, L) + Shapem(L) + αm (2.2)
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Figure 2.7: Each face model involves 2 main components. The first component is the

appearance which describes the HOG features (Dalal and Triggs, 2005) on each part of the

tree structure. The second component is the comprehensive arrangement of the relations

among all the parts which defines the overall tree shape of the face.

Basically, the computation involves two crucial components: the appearance evidence

from the learned features and shape arrangement of the structure of L. αm is the scalar

bias of mixture m. The visual definition can be seen in Figure 2.7. Both components are

defined as:

Appearancem(I, L) =
∑
i∈Vm

wmi · φ(I, li) (2.3)

Shapem(L) =
∑

i,j∈Em

amijdx
2 + bmijdx+ cmijdy

2 + dmijdy (2.4)

Eq. (2.3) calculates the whole amount of appearance indications of all the learned tem-

plates wmi for configuration li on mixture m compared to the features φ(I, li) extracted on

the location li of image I. A strong indication implies that the region more likely contains

a human face. However, a decent feature matching is still inadequate to form a conclusion.

The configuration L has to match the spatial arrangement of a face well as computed in

Eq. (2.4). dx = xi − xj and dy = yi − yj define the horizontal and vertical displacements

of the relative position between connected parts i and j. Parameters (a, b, c, d) control

the intensity of each term. As there are multiple mixtures m to be matched on an image,

the inference process will be determined by choosing the one which generates the highest

configuration score:

Score∗(I) = max
m

[
max
L

Score(I, L,m)

]
(2.5)
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All the face models were trained in a supervised manner with both positive and negative

images. Positive images contain human faces along with the associated facial landmarks

ground truth and mixture labels. On the other hand, negative images consists of non-

facial images. These data were used to learn both shape and appearance parameters.

An approach proposed by (Chow and Liu, 1968) was employed to discover the maximum

likelihood tree structure to estimate Em. With the learning approach by (Yang and

Ramanan, 2011), let zn = {Ln,mn} be the configuration and mixture of the positive

images, if all parameters (w, a, b, c, d, α) are grouped together as a vector β, the score

function can be defined as:

S(I, z) = β · Φ(I, z)

with nonzero elements in Φ(I, z) corresponding to mixture m. The model can be learned

from:

arg min
β,ξn≥0

1

2
β · β + C

∑
n

ξn

satisfying

β · Φ(In, zn) ≥ 1− ξn , ∀n ∈ positive samples

β · Φ(In, z) ≤ −1 + ξn , ∀n ∈ negative samples,∀z

and

βk ≤ 0 , ∀k ∈ K

where the positive samples will generate high score (≥ 1) and negative samples will gen-

erate low score (≤ −1) with violation penalty variable ξn. K represents the paramaters a

and c in vector β.

2.1.4 Source Code and Pre-trained Models

As part of their research, Zhu and Ramanan (2012a) provide the open source code for

both model training and testing in (Zhu and Ramanan, 2012b). Furthermore, they also

provide a few pre-trained face models. The first face model is the Independent-1050

which is the most extensive and comprehensive model because it consists of 18 mixtures

(Figure 2.8). 13 mixtures cover various face poses from −90◦ to 90◦ with 15◦ increment

including neutral frontal face. 5 more mixtures were added to express 5 distinct frontal

facial expressions (smile, surprise, squint, disgust, and scream). Not all the mixtures
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contain equal amount of landmarks. Both frontal and near-frontal faces (−45◦ to 45◦)

include 68 landmarks while the profile faces (−60◦ to −90◦ and 60◦ to 90◦) only involve 39

landmarks because of the invisible parts of the face. In total, Independent-1050 contains

(68) · (12) + (39) · (6) = 1050 landmarks on which each has its own HOG descriptor. Each

landmark is a collection of 5x5 HOG cells with spatial bin of 4.

Figure 2.8: Independent-1050 face models proposed by (Zhu and Ramanan, 2012a) with

18 mixtures. It covers 13 facial poses including frontal poses and 5 facial expressions.

Inspired by (Torralba et al., 2007), Zhu and Ramanan’s face models allow sharing de-

scriptors between similar parts. For instance, the eye corners of frontal face (0◦) are

quite similar to the one on 15◦ and 30◦ faces. This leads to a faster and more efficient

model since there are fewer features to match with a consequence of a slight reduction in

landmarking accuracy. Zhu and Ramanan provide two other face models which share the

HOG descriptor. The first one is the extensive shared model called the Share-99 where

each particular facial landmark only has one HOG descriptor among all the mixtures. In

total, only 99 HOG descriptors are adequate. The second model (the Share-146 ) is more

flexible where it shares the parts only if the model has a similar topology. The varieties of

the mixtures for this model are divided into 3 categories: frontal/near-frontal faces (−45◦

to 45◦) and 2 profile faces (right/left) (−90◦ to −60◦ and 60◦ to 90◦). As mentioned

previously, frontal/near-frontal faces contain 68 landmarks while the profile faces contain

39 landmarks. Overall, the Share-146 consists of (68 + 39 + 39 = 146) unique descrip-

tors. These two part-sharing models only cover 13 mixtures of facial poses without facial

expression other than neutral.

All these face models were trained with face images collected from CMU multiPIE database
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(Gross et al., 2010) as positive samples and non-facial images from INRIA person database

(Dalal and Triggs, 2005). 50 face images were used to train one individual mixture of face.

650 face images cover 13 facial poses (−90◦ to 90◦) and other 250 images cover 5 various

facial expressions (Independent-1050 only). On the other hand, all 1218 non-facial negative

images were chosen which contain various objects such as but not limited to building, sky,

road, and mountain.

Another significant advantage of Zhu and Ramanan’s proposed technique is the low re-

quirement of training data availability. An extensive analysis conducted by Zhu et al.

(2012) shows that the pictorial-tree-structure face models can be trained optimally even

with low number of positive training data. They claimed that the minimum of 50 face

images is sufficient to achieve high performance. Additional training data are unnecessary,

but it can improve the performance slightly.

2.2 The Viola and Jones Face Detector

Viola and Jones (2004) proposed a simple yet robust and efficient face detector. Their ap-

proach is one of the most used face detector approaches and well-known in the field of face

image analysis and understanding (Zhang and Zhang, 2010). Three main contributions

for this detector are as follows. First, a new image representation called the ”integral im-

age” was proposed in order to compute the Haar-like features (Papageorgiou et al., 1998)

with time complexity of O(1) (constant time). Second, Adaboost learning (Freund and

Schapire, 1995) was applied to choose only few crucial features from an enormous amount

of Haar features to build an efficient face classifier. Third, the architecture of the learned

classifier was designed in a ”cascade” manner which is capable of eliminating non-faces

regions quickly and devoting more computation time on the promising face regions.

Figure 2.9: Some examples of Haar features used in Viola & Jones face detector.

The idea behind the Haar feature (Figure 2.9) is simple. For each Haar feature, calculate

the difference of the sum of image intensities between white region and black region. This

scalar value can reveal a faint indication of particular facial components in the face. For

18



example, region around nose bridge will have a significant image intensity difference from

the sides while plain forehead region will produce low difference. All these features were

computed in various image positions and scales/sizes. This leads to a prohibitively very

high number of features which negatively impact the computation efficiency. This is the

reason that motivates them to propose a new image representation ”integral image” int

derived from an image im:

int(x, y) =

x∑
i=1

y∑
j=1

im(i, j)

This allows for a rapid computation of any Haar feature regardless of its position and scale

(Figure 2.10). Calculation for the sum of image intensities can be done in a constant time.

Figure 2.10: (a) ”Integral image”: the value of any position is the sum (
∑

) of all pixel

image intensities on the left or top of it. (b) Sum of image intensity on any region can be

done by basic arithmetical operations on all four corner values. In this example, region D

can be computed as sum = D − C −B +A.

Despite the speed enhancement via integral image, there is still a huge number of features

to be processed for training a classifier. Viola and Jones employed the Adaboost learning

algorithm (Freund and Schapire, 1995) to train a robust classifier by combining multiple

weak classifiers. Each Haar feature is considered a weak classifier and only limited amount

will be chosen to derive the strong classifier. Because of the features elimination process,

intuitively this approach can also be considered a greedy feature selection technique. Some

of the chosen relevant features are shown in Figure 2.11.

The combination of integral image and Adaboost produces a robust and efficient classifier

for face detection. Despite the quick performance, there is still a concern about the high
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number of input (image sub-window) to be processed. Apparently, most of the input are

the non-faces regions (background or incomplete faces). Considering this fact, Viola and

Jones restructured the architecture of the learned classifier in a ”cascade” manner. By

breaking the classifier into multiple stages, non-faces region can be eliminated quickly in

the early phase thus spending more computation on the promising face regions (Figure

2.12).

Figure 2.11: (a) Original face image. (b) Haar feature indicates the presence of eyes by

emphasizing the dark region on eyes and bright region on upper cheeks. (c) Haar feature

indicates the presence of eyes by emphasizing the bright part on nose bridge covered by

dark region on both sides.

Figure 2.12: The classifier has multiple stages. If the input sub-window fails in any stage,

it will be considered a non-face region. This allows for a quick elimination procedure and

assigning more computation on the face regions.
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2.3 Image Reconstruction Approaches

2.3.1 The NLCTV (Non-Local Colour Total Variation) Inpainting

The NLCTV (Non-Local Colour Total Variation) is one of the state-of-the-art inpainting

technique by (Duan et al., 2015). Inpainting is an image restoration technique which re-

constructs the missing/corrupted region based on the other image region which remains

intact, especially the surrounding/neighbour pixels (Bertalmio et al., 2000). The assump-

tion is that the location and the shape/size of the stained region is known beforehand.

The total variation (TV) model (Shen and Chan, 2002) is favored by many researchers

due to its simplicity and capability to recover sharp edges. However, the definition of the

objective function in Bounded Variation (BV) space and its feature domain restriction

on local information only lead to an unwanted staircase effect (i.e. patch/blocky appear-

ances) and thus not suitable for recovering complex texture regions. This problem has to

be solved by associating non-local information for better reconstruction. (Buades et al.,

2005) employed this solution to handle sophisticated texture. Their approach is extended

further by (Gilboa and Osher, 2008) to define the non-local gradient, divergence, and other

non-local operators by applying concepts of graph gradients and divergence. (Duan et al.,

2015) considered the application on the colour images by proposing coupling of multiple

colour channels. This preserves the structure and texture of the face while recovering the

missing region. The variational model of NLCTV is described as:

min
u
{E(u) =

√√√√ n∑
i=1

(

∫
Ω
|∇NLui|(x)dx)2

+
1

2

n∑
i=1

∫
Ω
λD(ui − fi)2dx}

(2.6)

where f = (f1, f2, ..., fn) and u = (u1, u2, ..., un) are the original and recovered image re-

spectively. D ⊂ Ω denotes the missing/broken region to be inpainted which is represented

by a mask function λD(x):

λD(x) =

0 x ∈ D

1 x ∈ Ω/D

As this approach involves the coupling of multiple color layers, this increases the com-
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putational complexity. (Duan et al., 2015) solved this problem by designing the Split

Bregman (Goldstein and Osher, 2009) algorithm of Eq. (2.6) with the auxiliary variables

~v = (~v1, ~v2, ..., ~vn) and Bregman iterative parameters ~b = (~b1,~b2, ...,~bn). This converts the

model into a iterative optimization problem:

argminu,~v{E(u,~v) =

√√√√ n∑
i=1

(

∫
Ω
|~vi|(x)dx)2

+
1

2

n∑
i=1

∫
Ω
λD(ui − fi)2dx

+
θ

2

n∑
i=1

∫
Ω
|~vi −∇NLui −~bk+1

i |2(x)dx}

(2.7)

such that~bk+1
i = ~bki +∇NLuki −~vki and~b0i = ~v0

i = 0. By optimizing the u and ~v alternatively

(i.e. fixing u to optimize ~v and then fixing ~v to optimize u), the solution of Euler-Lagrange

equation of u and generalized soft thresholding formula of ~v can be obtained.

λD(ui − fi) + θ∇NL · (~vki −∇NLui −~bk+1
i ) = 0 (2.8)

~vk+1
i ≈ max

|∇NLuk+1
i +~bk+1

i | −
∫

Ω|~v
k
i |(x)dx

θ

√∑n
i=1(

∫
Ω|~v

k
i |(x)dx)2

, 0


(
∇NLuk+1

i +~bk+1
i

|∇NLuk+1
i +~bk+1

i |

) (2.9)

The Gauss-Seifel iterative scheme is applied to obtain the approximate solution of Eq.

(2.8). Auxiliary variable ~v in Eq. (2.9) is the approximate solution. However, it may be

corrected by the Bregman iterations and much faster to compute. Figure 2.13 shows the

iterative process of the NLCTV inpainting technique.
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Figure 2.13: These images are the iterative process of NLCTV inpainting approach on a

sky image. The image was tainted by irregular dark lines across the whole image (first

image). The last image is the original image.
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2.3.2 The SFDAE (Stacked Face De-noising Auto Encoders) Deep Learn-

ing Model

The Stacked Face De-noising Auto Encoders (SFDAE) Deep Learning model (Pathirage

et al., 2015) is another state-of-the-art image reconstruction approach. This model was de-

signed and trained to reconstruct frontal neutral faces from ”noisy” faces. The motivation

behind the concept of Deep Learning is that many challenges of face-related applications

in real-life scenarios consist of non-linear characteristics. Some approaches proposed by

Zhu et al. (2014) and Zhu et al. (2013) are based on Deep Convolutional Networks (DCN)

which are capable of learning non-linear feature transformations, such as to reconstruct a

frontal face representation from an individual. However, considering the large scale of the

framework, it comes with a high demand of large amount of training data to fine-tune the

large number of parameters and huge computational power. As a consequence, it limits

the range of applications. To overcome these limitations, some approaches based on Deep

Auto Encoders (DAE) were proposed (Kan et al., 2014; Vincent et al., 2010; Hinton and

Salakhutdinov, 2006). The model’s hidden layers allow for an efficient feature learning via

orderly non-linear mappings. The simplicity of its design and training process leads to a

lower complexity compared to the DCN framework. The SFDAE was designed based on

DAE framework inspired by (Kan et al., 2014).

A classic Auto Encoder consists of two main parts: encoders and decoders. Let f(x) be

an encoder function which transforms an input vector x ∈ Rd into hidden representation

h ∈ Rr (usually r < d):

h = f(x) = Φ(Wx+ b) (2.10)

whereW ∈ Rrxd and b ∈ Rd are the affine mapping and the bias respectively. Φ(x) = 1
1+e−x

(sigmoid) is the activation function which introduces the non-linearity elements into the

framework. Decoder is the mapping function g(h) which recovers h into a vector z ∈ Rd

which is a reconstruction of input vector x:

z = g(h) = Φ(Ŵh+ b̂) (2.11)

The SFDAE is a patch-based single-decoder-multiple-encoders framework with an aim

to de-noise the contaminated inputs. Supervisory information from the actual frontal

neutral faces are used to train and optimize the de-noising layer. As a result, the learnt
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Figure 2.14: This is the overview of SFDAE framework. f1 represents the low dimensional

features derived from the first layer. The features are processed through de-noising process

on second layer represented by f2. Lastly, the features are decoded to reconstruct the

frontal neutral faces.

representation h will contain the highest mutual information between the actual neutral

and contaminated faces after de-noising process.

The overall SFDAE framework can be seen in Figure 2.14. The SFDAE consists of three

layers. The first layer performs a dimensional reduction with color fusion on the contami-

nated face input. The second layer de-noises the contaminated segment from the previous

layer. The feature space from this layer is the low-dimension discriminative features used

for face recognition. The last layer utilizes supervisory information to regularize and op-

timize the whole learning framework. The cost function of the first layer for optimization

of patch j is defined as:

[
W ∗l=1, b

∗
l=1, Ŵ

∗
l=1, b̂

∗
l=1

]
j

= arg min
W,b,Ŵ ,̂b

S∑
i=1

Ni∑
r=1

∥∥∥∥cjir − g1(f1

(
cjir

)
)

∥∥∥∥2

2

(2.12)

where S and Ni are the amount of subject identities and amount of images in class i

respectively. f1() and g1() correspond to encoder and decoder as defined in Eq. (2.10)

and Eq. (2.11). cjir is the compilation of pixel intensity pjir on RGB color channels (Red,

Green, Blue) for patch j of image r in class i. In the case of greyscale image, cjir only

contains one greyscale channel.

cjir =


[
pjRir p

jG
ir p

jB
ir

]T
, if colour images[

pjGreyir

]T
, if greyscale images
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The next step is the de-noising process (second layer) of the low dimensional representation

hjir derived from the first layer. The cost function is defined as:

[
W ∗l=2, b

∗
l=2, Ŵ

∗
l=2, b̂

∗
l=2

]
j

= arg min
W,b,Ŵ ,̂b

S∑
i=1

Ni∑
r=1

∥∥∥∥{cjir}F − g2(f2

(
hjir

)
)

∥∥∥∥2

2

(2.13)

where
{
cjir

}
F

is the compilation of features of the whole face corresponds to cjir. Lastly,

the full optimization of the whole system is done by fine-tuning the following equation:

[
W ∗l |Ll=1, b

∗
l |Ll=1, Ŵ

∗
L, b̂
∗
L

]
= arg min

Wl|Ll=1,bl|
L
l=1,ŴL ,̂bL

S∑
i=1

Ni∑
r=1

∥∥∥∥{cjir}F − p(crij))
∥∥∥∥2

2

(2.14)

where p(xi) = g2(f2(f1(xi))). Encoder and decoder weights are denoted by Wl|Ll=1 and

ŴL respectively. The representation observed from f2 (after de-noising) is the input for

face recognition.

2.4 Face Recognition Techniques

In chapter 6, our experiments evaluate facial recognition rate as a way to measure the

performance of the proposed approaches. Assuming the faces have been detected and

aligned, the simplest approach to compare between two faces is by employing the Nearest

Neighbour (NN) classifier (Brunelli and Poggio, 1993) where each image is defined from the

mixture of its pixel intensity (colour or grey-scale) into a high dimension feature vector

in image space. The comparison is conducted by computing and choosing the nearest

distance (usually Euclidean distance). Despite its simplicity, the size of the feature vector

can grow prohibitively large quickly. For instance, a single 500x500 pixels image will

create 250,000 dimension feature vector (750,000 if colour image). This amount leads to

expensive computation and large storage/memory requirement. Furthermore, this feature

vector is sensitive to noise. For example, variation in illumination might cause multiple

face images of the same subject to scatter around in the image space which will drop the

recognition rate significantly.

Because of the limitations of the Nearest Neighbour approach, we employ some well-

known face classification approaches. In this section, a brief description is provided for two
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subspace projection methods PCA (Principal Component Analysis) (Turk and Pentland,

1991) and LDA (Linear Discriminant Analysis) (Belhumeur et al., 1997) and the state-of-

the-art SRC (Sparse Representation Classifier) (Wright et al., 2009).

2.4.1 The PCA (Principal Component Analysis)

The PCA (Turk and Pentland, 1991; Belhumeur et al., 1997) is an unsupervised linear

dimension reduction approach which projects the feature vector into a lower dimension

subspace while maximizing the scatter of the projected data. The intuitive idea here is

to preserve a smaller portion of the data while still represents the majority information

of the original data. This reduction improves the computation efficiency and removes

undesirable noises in the data.

If we consider a set of N face images (input) {x1, x2, ..., xN} represented by a d-dimension

feature vector for each image, the aim is to define a mapping W to project all input

feature vectors into lower m-dimension (m < d) output feature vectors {y1, y2, ..., yN}.
Each output is calculated as

yi = W Txi for i = 1, 2, ...N (2.15)

We calculate the mapping W by maximizing the determinant of total scatter matrix St in

the following equations:

St =

N∑
i=1

(xi − µ)(xi − µ)T (2.16)

Woptimal = arg max
W
|W TStW | (2.17)

where µ is the mean image of all input images. Woptimal contains m eigenvectors (also

known as Eigenfaces) of St with the largest eigenvalues. Other eigenvectors with smaller

eigenvalues are usually associated with unwanted noise which can decrease the performance

of facial recognition rate and therefore should be discarded.

After learning the optimal mapping Woptimal, all the gallery images are projected into the

new subspace. In the testing stage, the query image is also projected into the corresponding
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subspace and the distance to each gallery image is measured. The Nearest Neighbour (NN)

classifier is then applied on this newly defined subspace to determine the identity of the

query face image.

2.4.2 The LDA (Linear Discriminant Analysis)

The LDA (Belhumeur et al., 1997) is also another subspace projection technique. This is

different from the PCA in the context of the objective of projection. The PCA attempts

to maximize the data variance in the new subspace, while the LDA maximize the separa-

bility/discrimination of the data classes (e.g. face identity). Since the main purpose is to

recognize faces, a strong discriminative projection is more desirable intuitively.

The LDA is a supervised approach where it utilizes the identity/class information from the

training dataset to train a discriminative classifier. To be more specific, the LDA projects

the feature vectors into a new subspace with a requirement that the face images belong

to the same subject are clustered together and the clusters of faces on different identities

are far away to each other. In summary, the LDA minimizes the intra-class (within-class)

distance and maximizes the inter-class (between-class) distance.

The subspace projection is similar to Eq. (2.15). However, the mapping W is now defined

based on the inter-class scatter matrix and intra-class scatter matrix. Assuming there are

c classes (unique face identities) in the dataset, the between-class scatter matrix (Sb) and

within-class scatter matrix (Sw) are defined as:

Sb =
c∑
i=1

Ni(µi − µ)(µi − µ)T (2.18)

Sw =
c∑
i=1

∑
xk∈Xi

(xk − µi)(xk − µi)T (2.19)

where µi and Ni are the mean image and amount of images respectively in class Xi.

Woptimal is then computed by maximizing the ratio between determinants of Sb and Sw:

Woptimal = arg max
W

|W TSbW |
|W TSwW |

(2.20)
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where the solution can be derived from a generalized eigenvectors and eigenvalues formu-

lation:

Sbwi = λiSwwi , i = 1, 2, ..., m (m ≤ c− 1) (2.21)

The computation in Eq. (2.21) is only feasible if Sw is a nonsingular (invertible) matrix.

Unfortunately, this assumption is most likely not satisfied due to the fact that Sw cannot

reach full rank since the number of image samples N is usually much smaller than the

number of pixels (d dimension). However, this problem has been solved by incorporating

the PCA at the early stage to project the feature vectors into a lower dimension subspace

to ensure that Sw is nonsingular. This approach (also known as Fisherfaces) computes

Woptimal derived from two projections Wpca and Wlda:

W T
optimal = W T

ldaW
T
pca (2.22)

Wpca = arg max
W
|W TStW | (2.23)

Wlda = arg max
W

|W TW T
pcaSbWpcaW |

|W TW T
pcaSwWpcaW |

(2.24)

The Nearest Neighbour (NN) classifier is also applied on the projected feature vectors in

order to recognize the identity of the query face image.

2.4.3 The SRC (Sparse Representation Classifier)

The SRC (Wright et al., 2009) is one of the state-of-the-art approaches to perform clas-

sification. This approach has an assumption that the training samples for each identity

contains sufficient variations (e.g. facial expressions) spanning the whole face space for

a robust facial recognition. However, if some prior knowledge of the query images are

known, then less variations of the training samples can be tolerated. For instance, if

we know that a query is the mugshot (frontal face without extreme facial expressions),

then the SRC will still be able to recognize it even with with limited mixture of facial

expressions in the training samples. For any query face image, it can be represented by
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the linear combination (with coefficients c) of the whole training samples. The intuitive

expectation is that coefficient C will be sparse (contain mostly zero-valued elements) with

the exception on the training samples of the same identity. This sparse representation will

immediately expose the identity of the query face images since it is easy to notice which

training subject is dominant in coefficient c.

Assuming we have a sufficiently large set of N d-dimensional training samples X =

{x1, x2, ..., xN} ∈ RdxN , the expectation is that a query image y can be represented as

a linear combination of X and sparse coefficient c:

y = Xc , c ∈ RN (2.25)

In order to ensure that coefficient c is as sparse as possible while satisfying Eq. (2.25),

one needs to solve the following problem:

c0 = min ‖c‖0 s.t. y = Xc (2.26)

which minimizes the amount of non-zero elements in c through `0-norm. Unfortunately,

Eq. (2.26) is considered a NP-hard problem which implies that it is difficult to solve it

efficiently. However, it has been discovered (Donoho, 2006; Candes et al., 2006; Candes

and Tao, 2006; Sharon et al., 2009) that the same solution can be obtained with `1-norm

with the condition that c is sufficiently sparse:

c1 = min ‖c‖1 s.t. y = Xc (2.27)

The ideal scenario is that the query image is ”clean” (no unwanted noise). However, the

real-life scenario will not always satisfy this condition. In order to improve the robustness

to noise, (Wright et al., 2009) extend Eq. (2.25) and Eq. (2.27) respectively into:

y = Xc+ z (2.28)

c1 = min ‖c‖1 s.t. ‖Xc− y‖2 ≤ ε (2.29)
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which incorporates noise vector z and noise level ε in the equations to anticipate noise in

the image. However, because ε is difficult to predict beforehand, one approach to solve

this by employing Lasso (Tibshirani, 1996) with sparsity regularization parameter λ:

min
c,z
‖y −Xc+ z‖22 + λ(‖c‖1 + ‖z‖1) (2.30)

After the coefficient c is computed, recognition can be done by choosing the class i which

produces the smallest image reconstruction residue on its corresponding coefficients:

min
i
ri(y) = ‖y −Xδi(c)‖2 (2.31)

where δi : RN → RN is a function to choose only the elements in coefficient c corresponding

to class i.

2.5 Databases

All the proposed approaches were tested on various publicly available facial image databas-

es. The usage of all these images is limited to research purpose only. In this section, brief

descriptions are provided for each database. However, the detail of experiment config-

uration (e.g. amount of chosen images, how to define training/testing set) will be de-

scribed separately on experiment section in each chapter. Since our research scope is on

frontal/near-frontal faces, we did not include non-frontal/profile face images in our exper-

iments. The environment of the databases can be divided into two categories: Controlled

and Uncontrolled.

2.5.1 Controlled Face Databases

Controlled database is the collection of images captured inside a laboratory/room (indoor)

based on some rules/restrictions. The purpose of this strict management is to minimize

the possibility of unwanted noise in the data and isolate the problem to be solved. For

example, the illumination can be adjusted (e.g. not too bright or too dark) for facial

recognition techniques. Some of the restrictions include:
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• Illumination (brightness and uniformity)

• Facial Expressions (e.g. neutral, happy, sad)

• Occlusions (e.g. sunglasses, scarf)

• Pose (angle of the face with respect to camera)

2.5.1.1 AR Dataset

There are over 3000 colour face images in AR database (Mart́ınez and Benavente, 1998)

(Mart́ınez, 1998) captured from 136 people (76 males and 60 females). However, only

photographs from 116 people (63 males and 53 females) were obtained properly on all

sessions. Each participant was required to attend two sessions (2 weeks apart). Although

all the images are only frontal faces, it has 13 variations on facial expressions (neutral,

smile, anger, and scream), illumination (lighting from left, right, and both), and occlusions

(sunglasses and scarf). (Figure 2.15).

Figure 2.15: 13 image variations on 2 sessions for each participant on AR database.

The ground truth of landmarks (Figure 2.16) are available for 112 people provided by

Ding and Martinez (Ding and Martinez, 2010) on all facial expressions (neutral, smile,

anger, scream). There are 130 landmarks covering all facial components (eyebrows, eyes,

nose, mouth, and jawline) which provide decent amount of information to define geometric

features. The ground truth of landmarks plays a significant role on our proposed approach.

2.5.1.2 CMU multiPIE

CMU multiPIE (Gross et al., 2010) (Gross, 2010) is a massive face database extended from

the Pose, Illumination, and Expression (PIE) database (Sim et al., 2002). It contains more

than 750,000 face images from 337 participants with a variation on 6 facial expressions
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Figure 2.16: Landmarks ground truth on AR database.
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(neutral, smile, surprise, squint, disgust, scream), 15 camera viewpoints (pose), and 19

illumination conditions in 4 sessions over the span of 5 months (Figure 2.17). Frontal

faces are recorded on high resolution, thus is suitable for face-related applications (e.g.

detection or recognition).

Figure 2.17: Examples of all the facial poses and expressions on CMU multiPIE database.

2.5.1.3 PUT

PUT database (Kasinski et al., 2008) (Schmidt, 2008) emphasizes heavily on the mixture

of face poses. 9,971 face images were captured from 100 participants. It means that

approximately 100 photographs were obtained from each subject. These 100 images were

divided into 5 subsets of image sequences (Figure 2.18). The first 4 subsets are the

sequence of faces rotating in different directions on various perspectives. The last subset

is the sequence of images without any constraint on expression or poses.

Figure 2.18: Sample images from PUT database. Every 3 images is one subset.

2.5.1.4 FEI

FEI (OLIVEIRA JR and Thomaz, 2006) (Thomaz, 2006) is Brazilian face database from

Artificial Intelligence Laboratory of FEI in São Bernardo do Campo, São Paulo, Brazil. It

involved 200 participants (100 male and 100 female) with 14 images each. The variations
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in the images include profile rotation (from 90◦ facing right to 90◦ facing left), slight facial

expressions (neutral and smile), and illumination condition. (Figure 2.19)

Figure 2.19: Sample images from FEI database.

2.5.1.5 BU-4D

BU-4D (Yin et al., 2008) (Yin, 2008) is mainly for facial expression (anger, disgust, hap-

piness, fear, sadness, surprise). The images of all participants are available in both 3D

(point cloud + texture) and 2D (digital image). This database is the extension of BU-3D

database (Yin et al., 2006) where a video (approximately 100 frames) is captured for each

facial expressions to create a dynamic 3D space of the data. There are 101 participants (43

male and 58 female). We only emphasize on 2D images for our experiments by manually

choosing the neutral frontal faces.

Figure 2.20: 3D and 2D data from BU-4D database.

2.5.1.6 CurtinFaces

CurtinFaces (Li et al., 2013) (Mian, 2013) has both 2D colour images and ”depth” infor-

mation which provides basic information of 3D geometric features of the faces. A standard

digital camera (Lumix-DMC-FT1) (high resolution 4000x3000 colour images) and a Kinect

sensor (Microsoft) (640x480 colour + depth images) were used in the photography ses-

sion. Various facial expressions, illuminations, poses, and occlusions were captured from
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52 participants along with some combinations (e.g. expression + pose, expression + illu-

mination) leading to 97 images per subject. Some of the examples can be seen in Figure

2.21.

Figure 2.21: range data (depth) and 2D images from CurtinFaces database.

2.5.1.7 CAS-PEAL-R1

CAS-PEAL-R1 (Gao et al., 2008) (Shan, 2008) is another massive database collected under

the sponsor of the Chinese National Hi-Tech Program and ISVISION Tech. Co. Ltd. The

variations in this database are enormous, particularly in Pose, Expression, Accessories,

and Lighting (PEAL). The whole database consists of 99,594 photographs from 1,040

participants taken from 9 camera angles, 5 facial expressions (closed eyes, frown, open

mouth, smile, surprise), 6 accessories (3 hat, 3 glasses), and 15 illumination directions.

However, only a partial of this dataset is made available to public which is called CAS-

PEAL-R1 containing 30,900 grey-scale photographs with less variations. (Figure 2.22)
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Figure 2.22: Images with variety on (from top) pose, accessories, expression, and illumi-

nation from CAS-PEAL-R1.
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2.5.2 Uncontrolled Face Database

Uncontrolled database is the opposite of the controlled database where there is no specific

restrictions. All photographs could be captured either indoor or outdoor. It is also possible

to have multiple faces in a single image. This configuration simulates the real-life scenarios,

thus producing a more challenging problem to solve.

2.5.2.1 FDDB

Face Detection Data set and Benchmark (FDDB) (Jain and Learned-Miller, 2010) (Chowd-

hury, 2010) is a collection of face images obtained from the Faces in the Wild data set

(Berg et al., 2004). The primary purpose of this database is for the performance evaluation

of face detection techniques. This contains 5171 faces from 2845 images (Figure 2.23). The

ground truth of the location of the faces are provided along with the source code to mea-

sure the ROC (Receiver Operating Characteristic) curve by plotting the relation between

True Positive and False Positive rate.

Figure 2.23: Some collections of face images from FDDB database.
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2.5.2.2 AFLW

Annotated Facial Landmarks in the Wild (AFLW) (Koestinger et al., 2011a) (Koestinger

et al., 2011b) is a massive-scale real-world collection of face images gathered from an online

photo management Flickr. Approximately 25,000 faces are available for the evaluation on

automatic facial detection/landmarking and pose estimation (Figure 2.24). There is no

particular restrictions on the facial expressions, number of faces in a single image and

poses.

2.5.3 INRIAperson

INRIAperson (Dalal and Triggs, 2005) (Dalal, 2005) is not a facial database. It contains

1805 images of human standing on variety of orientation and background. This database

is suitable to evaluate the performance of person detection techniques. Our main focus is

on the negative training subset. This subset contains 1218 non-person photograph which

is suitable to train the face detection system to distinguish between faces and non-faces

images. (Figure 2.25)

2.6 Summary

This chapter provides some basic introductions on preliminary knowledge related to the

topic of this thesis. First, the basic concept of the pictorial-tree-structured face models

by Zhu and Ramanan (2012a) is described along with the availability of open source code

(Zhu and Ramanan, 2012b). This explanation gives an intuitive idea on how the model

works to extract facial landmarks. Second, we describe the well-known Viola and Jones

face detector as it is employed in our proposed facial landmarking system. Third, two

image reconstruction approaches are explained briefly where they can be implemented to

remove the ”noise” from faces. Fourth, three face classification approaches are discussed.

Lastly, we provide brief descriptions on all facial/non-facial databases involved in all of

our experiments.

39



Figure 2.24: Samples of images from AFLW database.
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Figure 2.25: Samples of non-facial images from INRIAperson database.
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Chapter 3

Facial Landmarks Detector with

High Density Landmarks

Face image retrieval based on semantic features extraction requires the description (e.g.

shape and size) of facial components (e.g. eyes and mouth). One of the recent research

on semantic-based face retrieval is done by Conilione and Wang (2012). Their approach

strongly relies on accuracy of the location of facial landmarks to extract geometric infor-

mation. However, the facial landmarks were acquired manually there by human. This is a

time-consuming and impractical task, especially for enormous amount of faces in a large

dataset. This is why we need an automatic approach which can detect facial landmarks.

Some approaches have been developed to address this particular task such as Zhu and

Ramanan (2012a), Le et al. (2012), and Valstar et al. (2010). The one which caught our

attention and considered as the state-of-the-art at the time as claimed by Çeliktutan et al.

(2013) was developed by Zhu and Ramanan (2012a). As discussed in section 2.1, the con-

cept of tree pictorial structure combined with Histogram of Oriented Gradients (HOG)

features produces robust facial landmarking models which make it highly tolerant against

face deformations with capability to handle a large variety of faces.

However, Zhu and Ramanan’s face models have a shortcoming of having insufficient num-

ber of facial landmarks. In fact, this is a common shortcoming for all existing facial

landmark detectors. As explained in section 2.1.4, their frontal face models only provide

68 landmarks. Figure 3.1 shows the sample of facial landmarks extracted by one of their

face models. It can be seen that some face regions such as eyes are covered only by six

landmarks in each eye. As our objective is to extract semantic features, it is difficult to get

an accurate semantic representation with such few landmarks. For example, 6 landmarks

on the eye can only describe limited shapes such as hexagon or trapezoid which is not a

accurate depiction of eye silhouettes. The motivation of these existing landmark detec-

tors is to detect the existence and positions of facial components without consideration

of semantic descriptions of them. For this reason, we are motivated to propose a more

sophisticated and accurate frontal face model with an aim to use more landmarks for our

purpose of semantic description. For this purpose, we redesigned the architecture of Zhu

and Ramanan’s face models to have more landmarks in coverage of facial components
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especially on eyebrows, eyes and nose. The aim is to have a possible semantic description

of facial components with these added landmarks.

For this purpose, the AR database (Mart́ınez and Benavente (1998)) was selected to train

the frontal face model on various expressions because of the availability of high density

facial landmarks in ground truth (Ding and Martinez (2010)). For the rest of this chapter,

the proposed face model is referred as the AR model. Figure 3.2 shows the examples

of facial landmarks detection testing to see the significant difference of the information

provided by the AR model. One can see clearly that shape description becomes possible

with the proposed AR model.

Figure 3.1: Facial Landmarks from the Independent-1050 model is not sufficient to extract

semantic features. ( c© 2014, IEEE)

In terms of performance evaluation for different landmark detectors, the accuracy of the

location of important facial landmarks is used. We will compare the performance with Zhu

and Ramanan’s face model Independent-1050 which has been claimed to perform with the

highest accuracy among all their proposed models. Furthermore, we also compare with

another robust facial landmarking approach proposed by Le et al. (2012). They developed

a model called the CompASM which is an improvement of the classic statistical face model

Active Shape Model (ASM) (Cootes et al. (1995)). Instead of imposing the face model

into a holistic individual Gaussian model, Le et al developed a component-based ASM
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Figure 3.2: Examples of the facial landmarking results between Independent-1050 models

(top) and our proposed model (bottom). ( c© 2014, IEEE)

model to make it more robust against occlusions and various face expressions including

irregular one such as winking. Their work was inspired by the component-based approach

in Huang et al. (2007) and pictorial structure by Felzenszwalb and Huttenlocher (2005).

Lastly, many studies have shown that various colour spaces can significantly improve the

accuracy of face recognition (Yang and Liu (2008)). However, to the best of our knowledge,

not many researches have conducted on the impact of colour spaces on facial landmarks

detection. This motivates us to pursue this investigation with the AR model. We did the

face model training and testing accordingly on three colour spaces i.e. grey-scale, HSV,

and RGB-NII Yang et al. (2010) and analyze the effects on the performance.

The structure of this chapter is organized as follows. Section 3.1 describes the tree struc-

ture when adding more landmarks. Section 3.2 addresses the training setup and dataset

used for training AR model. All experimental setup and protocols are provided in section

3.3 along with the results. The contributions of this chapter are summarized in section

3.4.
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3.1 Model Creation

In Milborrow and Nicolls (2008), they claimed that a face model with a high level of facial

landmarks density is more likely to have a better semantic desription. Since our purpose

is to have an accurate face model with more landmarks, we need to train the proposed

AR model. For such aim, we would rearranged the architecture of Zhu and Ramanan’s

Independent-1050 frontal face models when adding more landmarks. Figure 3.3 visualizes

the changes we applied. The majority of the modifications were focused on the eyebrows,

eyes, and nose to cover these facial components with a more accurate contour instead of

a simple curve. Therefore, extracting semantic features will be more feasible in future.

Despite the significant changes on the model architecture, we still maintain the property

of a tree structure (no connected loop) for global optimal solution when we use dynamic

programming to seek the solution as stated by Zhu and Ramanan. Furthermore, the

symmetry of facial components (landmarks) and the relative positions between them are

also preserved.

3.2 Model Training and AR Database

The training face images for the AR model are chosen from AR database (Mart́ınez and

Benavente (1998)). Our reason to choose this database is due to the availability of dense

landmarks in ground truth (Ding and Martinez (2010)) as described in section 2.5.1.1.

This amount is much higher than the Independent-1050 models trained on CMU multiPIE

database (Gross et al. (2010)) which only provides 68 landmarks on frontal faces. Since the

face images on AR dataset are divided into two sessions (2 weeks apart between sessions),

we select the first session for training and the other for testing. The face images are chosen

based on two categories. First, we avoid various illumination and occlusion (sunglasses and

scarf) scenarios, thus leaving us with four facial expressions (neutral, smile, anger, scream).

Second, as the landmarks in ground truth are only available for limited participants, the

proposed face model is only trained on 112 distinct individuals (58 men, 54 women).

The AR model is trained with the same training method provided by Zhu and Ramanan

(2012b) with the spatial resolution variable for HOG cells set as 4. 448 face images (112

per facial expression) were used as input for positive image set. On the other hand,

1218 non-face images from INRIAperson database (Dalal and Triggs (2005)) were used

as negative image set. As the Independent-1050 models gains the highest accuracy due

to its non-sharing-parts trait, we also develop the AR model with independent landmarks
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Figure 3.3: The tree structure of Independent-1050 model (left) and proposed AR model

(right). The tree restructuring was made to depict better geometric descriptions and

improve the accuracy rate. ( c© 2014, IEEE)
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(130 unique landmark descriptions for each facial expression). The visualization of both

Independent-1050 and AR model can be observed in Figure 3.4. It can be clearly seen

that the proposed AR model can provide better information on face description.

3.3 Experiments

In order to evaluate the performance of the proposed AR model, we have conducted three

separate experiments. First, we compare it with the Independent-1050 models to measure

the performance improvement on both accuracy and geometric descriptions. Second, we

compare with another robust approach CompASM proposed by Le et al. (2012) with the

same evaluation metrics. Lastly, the AR model is integrated on various color spaces on

both training and testing for performance comparison. All experiments are done on 112

subjects (along with the landmark ground truth) in the second session of AR database.

3.3.1 Evaluation Protocols

We employ standard procedures of evaluating performance of facial landmarks detector

as mentioned by Çeliktutan et al. (2013). The first procedure is to compare the average

difference/distance between the detected landmarks and the ground truth. This distance

may also be referred as relative error. In order to produce a consistent result regardless

the size of the faces, the error rate is normalized by dividing with the corresponding Inter-

Ocular Distance (IOD) (distance between both eye centres). Let G and Q be the sets of

face images with ground truth and testing query face images respectively. The calculation

can be defined as:

distIOD(Gji , Qji ) =
||Gji −Q

j
i ||2

IODi
(3.1)

where the error rate is measured by calculating the Euclidean distance between landmarks

j on face image i, then normalized with the corresponding IOD. Assuming there are N

face images and L landmarks to be tested on each face, the average relative error can be

computed as:

Relative Error =

∑L
j=1

∑N
i=1 distIOD(Gji , Qji )

L * N
(3.2)
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Figure 3.4: Visualization of frontal face models with various facial expressions from

Independent-1050 (top) and AR model (bottom). ( c© 2014, IEEE)
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Even though the relative error is able to show decent indication of the facial landmarking

performance, it is sensitive to landmark outliers which can increase the error rate signifi-

cantly. To further improve the validity of the result, we employ another procedure. The

second procedure is to measure the detection rate of the extracted landmarks. It counts

the number of landmarks which are detected in a reasonable distance to the landmark

ground truth. In other words, the detected landmarks have to be inside a range of par-

ticular thresholds. In this scenario, the thresholds are defined based on the percentage of

the corresponding IOD. We measured on three categories: 5%, 10%, and 20% as shown in

Figure 3.5.

Figure 3.5: 3 different thresholds for detection rate on eye corner. Starting from the

smallest circles are the 5%, 10%, and 20% of IOD respectively. ( c© 2014, IEEE)

As there is a significant difference on the amount and location of landmarks between

Independent-1050, CompASM, and AR model, we need to choose which landmarks to be

used for fair comparison. We decided to compare 17 fiducial landmarks from the m17

set (Çeliktutan et al. (2013)). These landmarks include eyebrow corners (4 landmarks),

eye corners and centres (6 landmarks), nose tip and sides (3 landmarks), and surrounding

the mouth (4 landmarks). These landmarks are chosen because its presence is consistent

among all the face models to compare (except for 2 landmarks on side nose for Independent-

1050). Furthermore, these landmarks are considered useful and important because of

its stability and reliability for facial recognition/tracking applications on various facial

expressions. Figure 3.6 visualizes the landmarks set L for Independent-1050, CompASM,
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and AR model.

Figure 3.6: 15 landmarks for comparison on Independent-1050 (left) and 17 landmarks

for comparison on CompASM and AR model (right).

Except for these two standard procedures, we also evaluate the accuracy of geometric de-

scription of the landmarks on three facial components. This is new as previous landmark

detectors mainly concern about component existence and locations. This is done by mea-

suring the width and height of facial components K = {left eye, right eye,mouth} and

compare it with the ground truth. The error rate is also normalized by the correspond-

ing IOD. The width is calculated as the distance between the leftmost and rightmost of

landmarks on that corresponding facial component (horizontal). The height is also com-

puted in the same manner except that the direction is vertical. Figure 3.7 visualizes the

measurement of both width and height. Using the same image sets G and Q containing

N face images, the width error rate for each facial component in K can be computed as:

widthIOD(Gki , Qki ) =
widthdiff(Gki , Qki )

IODi
(3.3)

Width Error Ratek =

∑N
i=1 widthIOD(Gki , Qki )

N
(3.4)

While the height error rate can be defined as:
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heightIOD(Gki , Qki ) =
heightdiff(Gki , Qki )

IODi
(3.5)

Height Error Ratek =

∑N
i=1 heightIOD(Gki , Qki )

N
(3.6)

Figure 3.7: Width and height of the facial components are calculated as the largest distance

between landmarks on horizontal (x-axis) and vertical (y-axis) directions respectively.

As for the third experiment, we conduct an investigation on the impact of various colour

spaces on the AR model in detecting facial landmarks (Tkalcic and Tasic (2003) provides

some preliminary descriptions of some early colour spaces). This experiment is motivated

by the fact that colour information provides essential features for improving the perfor-

mance of face image retrieval or recognition (Yang and Liu (2008)). However, as far as we

know, the studies on facial landmarks detection are not found.

Figure 3.8: Four colour spaces: RGB, grey-scale, HSV, and RGB-NII.
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In this case, the AR model is trained in RGB (Red, Green, Blue) colour space which is

the commonly used colour for digital images. We conduct the experiment with three other

colour spaces: grey-scale, HSV (Hue, Saturation, Value), and RGB-NII as proposed by

Yang et al. (2010). The visualization of these colour spaces can be seen in Figure 3.8.

RGB-NII is defined as the normalized RGB with across-color-component colour space

normalization technique (CSN-II) as follows:

R̃II

G̃II

B̃II

 =

 1 0 0

−0.5774 0.7887 −0.2113

−0.5774 −0.2113 0.7887


R

G

B


The face images for training and testing were converted to each colour space. We then

trained 4 variation of AR models based on the corresponding colour space. Finally, we

measure the relative error and detection rate of all 130 landmarks compared to the ground

truth. In summary, we conducted performance evaluations by measuring:

• Relative error of 17 landmarks on m17 set (eyebrow corners (4 landmarks), eye

corners and centres (6 landmarks), nose tip and sides (3 landmarks), and surrounding

the mouth (4 landmarks)). (15 landmarks only for Independent-1050 excluding 2

landmarks on side nose)

• Detection rate with thresholds 5%, 10%, and 20% of IOD on landmarks set m17.

• Width and height error rate for eyes and mouth.

• Relative error and detection rate of AR model on 4 different colour spaces on all 130

landmarks.

3.3.2 The Independent-1050 Model VS the AR Model

We first compare the performance of the proposed AR detector and the Independent-1050

model. The first part of the result on relative error and detection rate is shown in Table 3.1.

It can be seen that the Independent-1050 models produce approximately twice the error

rate compared to our proposed AR model. Similar improvement can also be observed by

the detection rate. the AR model achieves much higher detection rate even in the smallest

threshold with 37.19% improvement. These results show that our proposed model can
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detect important landmarks more accurately. One can find that adding more landmarks

can improve the detection rate significantly.

Table 3.1: Relative error and detection rate from Independent-1050 and AR model. ( c©
2014, IEEE)

Model Relative Error 5% IOD 10% IOD 20% IOD

Independent-1050 0.0726 41.29% 77.26% 96.73%

AR model 0.0365 78.48% 96.35% 99.75%

The second part of the result on geometric shape is shown in Table 3.2. Once again, the

proposed AR model can outperform the Independent-1050 significantly, especially on the

eyes by large margin. This is to be expected since some of the detected landmarks do not

cover the eyes properly in the Independent-1050 model. Some of the examples can be seen

in Figure 3.9. These experiments show that the proposed model is much better than the

Independent-1050 model.

Table 3.2: Width and height error rate from Independent-1050 and AR model. ( c© 2014,

IEEE)

Component Model Width Error Height Error

Right Eye
Independent-1050 0.0956 0.0561

AR model 0.0267 0.0233

Left Eye
Independent-1050 0.0941 0.0515

AR model 0.0254 0.0214

Mouth
Independent-1050 0.0438 0.0522

AR model 0.0361 0.0403

3.3.3 The CompASM model VS AR Model

In this section, we will compare the proposed AR Model with another well-known detector,

the CompASM model. The necessity is that the CompASM model is totally created from

different perspectives and it does not belong to the same category of the proposed AR

Model and the Independent-1050 model. The relative error and detection rate are shown

in Table 3.3 and one can see that the proposed model is much better than the CompASM

model. Furthermore, it turns out that some faces can not be detected by the CompASM

model due to a low fitting score and we will discuss this issue in next chapter. There are

11 false negative cases i.e. 1 smiling face and 10 scream expressions. We avoid involving

these face images for a fair comparison.

The result on geometric description is listed in Table 3.4. This also shows a significant
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Figure 3.9: Some testing result from Independent-1050 (left) and AR model (middle).

The landmarks in ground truth are shown in the last column (right).
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performance gap dominated by our proposed AR model. The enormous gap on width and

height error rates on mouth drew our attention. After conducting intense observation, we

discovered that the CompASM model does not work well with the scream facial expression.

The examples can be seen in Figure 3.10. As this affects the performance significantly,

we repeat the experiments after ignoring scream expression. The revised result is shown

in Table 3.5. One can find that the proposed AR model still outperforms the CompASM

model significantly and quite consistent on the other three facial expressions. However,

the CompASM model did quite well on extracting width and height of the eyes as the

error rate on a par with AR model and even slightly better on neutral expression.

Table 3.3: Relative error and detection rate from CompASM and AR model. ( c© 2014,

IEEE)

Model Relative Error 5% IOD 10% IOD 20% IOD

CompASM 0.0769 46.33% 77.52% 94.49%

AR model 0.0353 79.93% 96.85% 99.80%

Table 3.4: Width and height error rate from CompASM and AR model. ( c© 2014, IEEE)

Component Model Width Error Height Error

Right Eye
CompASM 0.0595 0.0308

AR model 0.0265 0.0233

Left Eye
CompASM 0.0515 0.0300

AR model 0.0252 0.0216

Mouth
CompASM 0.0979 0.1516

AR model 0.0359 0.0399

Table 3.5: Relative error and detection rate from CompASM and AR model on each

expression. ( c© 2014, IEEE)

Evaluation Metric
Neutral Smile Angry

CompASM AR model CompASM AR model CompASM AR model

m17 landmarks 0.0541 0.0342 0.0735 0.0334 0.0550 0.0340

Right Eye Width 0.0528 0.0249 0.0616 0.0244 0.0459 0.0232

Left Eye Width 0.0401 0.0218 0.0483 0.0231 0.0405 0.0215

Mouth Width 0.0483 0.0318 0.1583 0.0459 0.0513 0.0321

Right Eye Height 0.0202 0.0228 0.0248 0.0244 0.0253 0.0226

Left Eye Height 0.0184 0.0221 0.0219 0.0210 0.0242 0.0234

Mouth Height 0.0444 0.0429 0.0530 0.0332 0.0459 0.0386

5% IOD 60.50% 80.83% 44.67% 82.09% 56.36% 81.83%

10% IOD 87.55% 96.69% 77.27% 97.30% 88.71% 97.48%

20% IOD 98.74% 99.84% 95.39% 99.84% 98.90% 99.84%
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Figure 3.10: Samples of CompASM results on scream expression. The facial landmarking

performance is not so accurate on scream expression.
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Table 3.6: Relative error and detection rate of the AR model on various colour spaces.

( c© 2014, IEEE)

Relative Error 5% IOD 10% IOD 20% IOD

RGB 0.0391 76.01% 95.59% 99.66%

HSV 0.0401 75.02% 95.47% 99.53%

Grey 0.0393 76.08% 95.47% 99.57%

RGB-NII 0.0405 74.95% 94.91% 99.43%

3.3.4 The AR Model with Different Colour Spaces

In this section, we will use different color models to train and test the face images for

landmark detection. This is motivated by the existing research in face recognition as

different color models will have significant impacts. We did similarly on the proposed

AR model. The relative error and detection rate are summarized in Table 3.6. The

highest performance was achieved in both RGB and grey-scale colour spaces. However,

the performance differences are not too significant and we cannot draw a clear conclusion

on this issue as in the face recognition. Variation in colour spaces does not seem to strongly

affect the result of facial landmarks detection. This can be explained by the fact that the

edge information are still preserved well on the chosen colour spaces. Since the AR model

utilizes HOG features which only rely on edge information, it still performs relatively

similar. This is different from the scenarios of face recognition.

3.4 Summary

In this chapter, we proposed a new landmark detector, the AR Model, based on the work

by Zhu and Ramanan. The proposed AR model is derived from a more sophisticated

face structure by adding a high level of landmark density for possible better semantics

descriptions. The AR model contains 130 landmarks trained on AR database which is

almost twice as many as the Independent-1050 can provide. In the process of building

this new model, we use AR database due to the availability of large amount of landmarks

ground truth.

We employed experimental setup to measure the error rate of landmarks, detection rate,

and geometric description accuracy in order to compare our proposed model with other

two face models: the Independent-1050 and the CompASM. The results show that our

proposed model outperforms both of them significantly. In fact, these results confirmed
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our expectation for this new detector and we will use it in future study in the next few

chapters. The last experiment investigates the effect of colour spaces on the AR model

which shows no significant correlation between detection accuracy and chosen color space.

Despite the significant increase in performance, the AR model can detect the landmarks

properly only on large faces. In practice, as the face image resolutions are not unique,

we will investigate how to develop landmark detectors for different resolution of images,

especially for faces in very low resolutions. This issue will be investigated and new face

models will be proposed in chapter 4.
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Chapter 4

Facial Landmarks Detection for

Multi-Resolutions Images

In real-life applications, there is no guarantee that the size of the faces in an image are

always in high resolution. We need to consider the scenarios where the face images are in

lower resolutions which can be caused by a large distance between persons and cameras.

Since the proposed AR model in last chapter is trained on high resolution faces, the learned

features are only compatible with high resolution faces. In fact, if the minimum face size is

below 240x240, it starts to fail in detecting the facial landmarks. Even the Share-146 face

model (Section 2.1.4) developed by Zhu and Ramanan (2012a) is only capable to detect

landmarks with resolution above 80x80. This is a significant limitation because it is still

possible to conduct facial recognition on even smaller faces (Zhao et al., 2003).

Motivated by this observation, we will propose the Multi-Resolutions (MR) models in

this chapter to integrate with the proposed AR model (chapter 3) and expand the face

resolution from high resolution down to 30x30 pixels for facial landmarks detection. Our

investigation reveals that the initial amount of landmarks (130) from the AR model is

too dense for small faces, which hinders the process of face models training. Therefore,

we will develop an automatic adaptive landmarks scheme to achieve attentive selection of

particular important facial landmarks. The facial landmarks are chosen accordingly based

on the size of the face images in order to optimize computation time while providing

sufficient landmarks as small faces contain less detail. Through this analysis, we aim to

train 4 face models on various face resolutions: 210x210, 150x150, 90x90, and 30x30.

The performance evaluations are based on the relative error rate and detection rate with

the same set of thresholds used in Section 3.3.1 on 11 fiducial landmarks. 196 Frontal face

images from PUT database (Kasinski et al., 2008) were selected as the testing dataset.

Our performance evaluations involved three other facial landmarking approaches. The first

one is the Share-146 model proposed by Zhu and Ramanan (2012a) since it was claimed to

be able to detect the smallest faces among all their proposed face models. This model is

compared as a baseline evaluation. The second one is the STASM developed by Milborrow

and Nicolls (2014) which is an improvement of the Active Shape Model (ASM) approach
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(Cootes et al., 1995). They employed SIFT features (Lowe, 2004) in a simplified form

integrated with Multivariate Adaptive Regression Splines (MARS) approach (Friedman,

1991) for efficient features matching. The last one is the Intraface approach proposed

by Xiong and De la Torre (2013). They solved the optimization problem of Non-linear

Least Squares (NLS) function by introducing their Supervised Descent Method (SDM)

approach. The amount of landmarks detected by the STASM and Intraface are 77 and 49

respectively.

The structure of this chapter is organized as follows. Section 4.1 describes the details of

framework setup for training the MR models including landmarks reduction and selection

process via adaptive landmarks scheme. Section 4.2 outlines the detail of testing face

images set and evaluation protocols used for performance comparison. The results will

then be discussed and analyzed to assess the improvement of the MR models. Lastly, the

summary is presented in Section 4.3.

4.1 The Multi-Resolutions (MR) models

As mentioned in section 2.1.4, Zhu and Ramanan published three of their proposed

face models for research purposes (Zhu and Ramanan (2012b)). The first one is the

Independent-1050 model used for comparison in chapter 3. The other two models are the

Share-99 and Share-146 with parts-sharing trait for computational efficiency. According

to their claim, the Share-146 was trained to detect landmarks on smaller faces compared

to the other two models. the Share-146 can perform well on faces with size at least 80x80

pixels. However, since face recognition is feasible on even smaller faces (Zhao et al. (2003)),

this fact motivates us to propose new face models of facial landmarks detection for smaller

range of face image sizes.

Previously, we have proposed the AR model for better accuracy and geometric description.

However, since it was trained on large face images from AR database (approximately

300x300 pixels) (Mart́ınez and Benavente (1998)), it only performs well on high resolution

face images. The required face size is at least 240x240 before it fails to perform landmark

fitting properly. Based on this observation, we attempt to re-train different face models

with similar tree structure and number of landmarks of AR model but on smaller size of

face images. However, the data for small facial images and their landmarks in ground

truth were not available and we have to obtain them by scaling down the same training

data set used on the AR model by using the bicubic interpolation technique (Mat (2012)).

We were able to complete the model training only on slightly smaller faces. As a matter
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of fact, the reason behind this failure for the proposed AR model on high resolution is the

high level of facial landmarks density imposed on small faces. Since the landmarks are too

close to each other on small faces, most landmark features would lose their uniqueness and

make it more difficult to distinguish between neighboring landmarks. Thus, we have to

adjust the number of landmarks and structure of the face models to fit small size of face

images. As the original AR model becomes a part of MR models only for high resolution

faces with 130 facial landmarks, we refer it as the MR-130 models in the sequel.

4.1.1 Adaptive Number of Landmarks via Resolution Reduction

The first question for the number of landmarks for a given image should be solved first.

Our extensive experiments show that the acceptable threshold for face size reduction is

approximately 80% of the initial scale. Beyond this number will cause the face landmarks

to be too dense for a successful training. Based on this observation, we propose an auto-

matic and systematic framework to reduce less essential landmarks accordingly depending

on the intentional training face size.

We need to consider three essential aspects in designing this landmarks reduction

framework. First, since the detected landmarks will be used on face-related applications

such as face recognition, there is a necessity on preserving important/fiducial facial land-

marks in the reduction process. Our observation motivates us to include at least the nose

tip and corners of both eyes and mouth. Second, we should retain the symmetrical pro-

portion of the face tree structure by reducing the landmarks in a uniformly-distributed

manner. For instance, it is undesirable to have 6 landmarks on one eye while the other eye

contains 10 landmarks. Third, all the landmarks have to be rearranged once a landmark

is removed. Otherwise, it will leave a large gap between neighboring landmarks (Figure

4.1).

In order to preserve the primary/fiducial landmark points, we select some ”special” land-

marks with high priority. These landmarks will not be removed from the face model

structure with any face resolution. We refer them as the Very Important Points (VIP).

After much consideration, we decided to develop the face architecture based on the chosen

VIP as shown in Figure 4.2. Inspired by the critical landmarks defined by Çeliktutan

et al. (2013) and some additional landmarks, we selected 18 VIP i.e. 8 corners on both

eyebrows and eyes, 1 nose tip surrounded by 3 landmarks on nose contour and 1 between

the eyes, 2 mouth corners, and 3 along the face contour.

The role of VIP is not only limited to preserving crucial landmarks, but also to serve as
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Figure 4.1: A large gap created every time a landmark is removed. ( c© 2016, AIMS)
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Figure 4.2: 18 chosen Very Important Points (VIP) to preserve on the proposed MR

models. ( c© 2014, IEEE. 2016, AIMS)
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a border to split the face structure into separate segments. The adjustment was done to

ensure each segment is enclosed by two VIP. The amount of facial landmarks in-between

will be reduced gradually while the face resolution for training gets smaller. The reason

for this scheme is to have a balanced and symmetric reduction on the whole face structure.

In total, we have 17 segments as shown in Figure 4.3.

Figure 4.3: Face structure is divided into 17 segments by the VIP. ( c© 2014, IEEE. 2016,

AIMS)

In the resolution reduction process, since reducing a landmark would leave a trace of gap,

we need to adjust the new position of the remaining landmarks to maintain a consistent

distance along the initial line of landmarks. To visualize this scenario, refer to an example

in Figure 4.4. Two segments (upper and lower eye lid) between two VIP (eye corners) are

shown along with the initial eye landmarks represented with red dots. If one landmark is

removed on each segment, the new set of landmarks are rearranged as shown by the green
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dots. As can be seen in this example, the revised landmarks stay on the initial trajectory

of the eye contours to preserve the geometric detail as much as possible. This process

is repeated until the distance between neighboring landmarks is greater than initial 80%

scale distance. Finally, the whole procedure to reduce landmarks in a single segment is

summarized in algorithm 4.1.

Figure 4.4: Rearrangement of the landmarks when performing landmarks reduction. Red

dots represent the initial landmarks while the green dots represent the revised landmarks.

( c© 2016, AIMS)

4.1.2 Training for the MR Models

With the proposed landmarks reduction schema to produce less landmarks density in the

face images training set, we can train the MR models on any resolution of choice after

proper reduction. The face images for training are from the AR database by Mart́ınez

and Benavente (1998) with the corresponding landmarks ground truth (Ding and Mar-

tinez (2010)). We also use 4 facial expressions (neutral, smile, angry and scream) from

112 subjects each, the same set used for model training in section 3.2. We decided to
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Algorithm 4.1 Landmark Reduction on Each Segment between 2 Very Important Points

(VIP). ( c© 2016, AIMS)

1: procedure Reduce Landmarks(coord, percentage)

coord is a set of coordinates (x,y) of landmarks.

the first and last landmarks are the VIPs.

percentage is the scale of the landmarks based on the corresponding face image.

the assumption is that the percentage is less than 80% image scale.

final coord← []

2: row ← size(coord, 1) . row is the amount of landmarks

3: landmarks← row − 1

4: total percentage← percentage ∗ 100.0 ∗ (landmarks)

5: dist per pair ← total percentage/landmarks

6: while dist per pair < 80 and landmarks 6= 1 do . reduce the landmarks one by

one

7: landmarks← landmarks− 1

8: dist per pair ← total percentage/landmarks

9: end while

10: if landmarks = 1 then

11: final coord← [coord(1) coord(row)] . only 2 VIPs remain

12: else

13: final coord← [coord(1)]

14: for i = 1 to landmarks do

15: position← (i/landmark) ∗ (row − 1)

16: int← floor(position)

17: frac← position− int
18: if int+ 1 < row then

19: new landmark ← coord(int+1)+(coord(int+2)−coord(int+1))∗frac
20: else

21: new landmark ← coord(int+ 1)

22: end if

23: final coord← [final coord new landmark]

24: end for

25: end if

26: return final coord

27: end procedure
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train 4 MR models on 4 scale levels: 70%, 50%, 30%, and 10% (image resize via bicubic

interpolation approach (Mat, 2012)). These models cover various resolutions down to size

30x30. Furthermore, four facial expressions (neutral, smile, angry, scream) are involved

on each scale. The process of landmarks reduction for each scale level can be observed in

Figure 4.5. It shows how the landmarks is gradually being reduced as the face size gets

smaller. For a better visualization purpose, the face images in the figure were not scaled

down in order to emphasize the landmarks reduction process. However, the real model

training used the scaled-down face images.

Figure 4.5: The landmarks reduction process on a face. We emphasize on the facial

components eye, nose, and mouth in this figure. The order of the scale level is as follows:

100% (ground truth), 70%, 50%, 30%, 10%. The face images were not scaled down here

for easier observation. ( c© 2014, IEEE)

As mentioned previously, the previous AR model is now referred as the MR-130 model

because it has 130 landmarks. Following the same naming principle, the other MR models

are named the MR-103, MR-70, MR-36, and MR-14 for 70%, 50%, 30%, and 10% scale

levels respectively. The information on the MR models is summarized in Table 4.1.

The complete set of MR models are shown in Figure 4.6.

Table 4.1: The summary of the MR models. All of them are trained on four facial

expressions (neutral, smile, angry and scream) from 112 subjects from AR database. ( c©
2014, IEEE. 2016, AIMS)

MR Models Target Face Sizes Landmarks Amount Training Face Sizes (Approximate)

MR-130 Above 255 130 300x300

MR-103 180 - 255 103 210x210

MR-70 120 - 180 70 150x150

MR-36 60 - 120 36 90x90

MR-14 Below 60 14 30x30
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Figure 4.6: The complete set of MR models. Starting from the first row are the MR-14,

MR-36, MR-70, MR-103, and MR-130. Various facial expressions are shown in the order

of neutral, smile, angry, and scream. ( c© 2016, AIMS)

68



We should make a small exception of the VIP rule on the MR-14 model. As there are 18

VIP, the MR-14 should at least contain 18 important landmarks. However, we decided

to keep only one landmark on the nose tip and ignore the other 4 landmarks around nose

region since the features are too subtle on a very small faces according to our observation.

Refer to Figure 4.7 for the visualization.

Figure 4.7: 4 VIP are exempted from the MR-14 model. Our observation shows that the

features are too subtle to be included. ( c© 2016, AIMS)

4.2 Experiments

For the different AR models developed in last section, we first need to measure the perfor-

mance improvement of our proposed MR models by comparing with the Share-146 model

by Zhu and Ramanan (2012a). The reason for choosing the Share-146 is because this

model can reach the lowest resolution (down to 80x80) compared to the other proposed

models. We then compared it with two other robust facial landmarking approaches: the

STASM model by Milborrow and Nicolls (2014) and Intraface model by Xiong and De la

Torre (2013). Next, we will address the experiments in detail.
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4.2.1 Testing Dataset

As all the models are trained by the AR dataset, we use the PUT dataset for our testing in

this chapter for fairness to different detectors. Frontal faces from PUT database (Kasinski

et al. (2008)) (section 2.5.1.3) were used for evaluating performance of the proposed MR

models as the ground truth for some important landmarks are given in this dataset. All the

images are available in high resolution 2048x1536 with face sizes approximately 750x750

on controlled illumination. Since the faces are provided in a sequence of rotating head

(various poses), we had to manually choose frontal faces out of the first two face pose

subsets. In total, 196 frontal face images from 98 participants were selected as the testing

set.

Besides the original face size (750x750), we also scaled it down to seven various sizes to

test each MR model (Figure 4.8). We adjusted the scale level accordingly to gain face

sizes on approximately 600x600, 450x450, 300x300, 210x210, 150x150, 90x90, and 30x30.

Next, we will present the performance evaluations with different detectors.

4.2.2 The Evaluation Protocols

Some evaluation protocols used in section 3.3.1 are applied in this experiment. To be

more specific, we measured the relative error rate and detection rate with the same set

of thresholds. However, we only compare 11 landmarks due to fewer common landmarks

between the proposed MR models and other models (Figure 4.9). Furthermore, measuring

accuracy of geometric descriptions is not included as there are not sufficient details of facial

components on low resolution faces.

4.2.3 The MR Models VS the Share-146 Model

We first focused on the results on the comparison with the Share-146 model by Zhu and

Ramanan (2012b) as the baseline evaluation. The results are summarized in Table 4.2 and

4.3. For large faces (300x300 or above), our proposed MR models produce approximately

40% less error rate and 30% more detection rate for the lowest threshold (5%). The

MR models also still outperform the Share-146 on the other thresholds. For the cases of

small faces ( with resolution of 210x210 or lower), even though the performance gap is

less, the improvement is still apparent. The impact is more obvious especially on the case

of the smallest face (30x30) where the Share-146 cannot even detect the presence of the
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Figure 4.8: Samples of face image in various resolutions. In clockwise direction, the

sizes shown here are 750x750, 600x600, 450x450, 300x300, 210x210, 150x150, 90x90, and

30x30. It is clearly seen that the information difference between large and small faces are

imminent. ( c© 2014, IEEE)

71



Figure 4.9: Eleven facial landmarks for performance evaluation. ( c© 2014, IEEE. 2016,

AIMS)
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faces, which is the main disadvantage of Zhu and Ramanan’s face models.

Table 4.2: 11 Facial Landmarks Relative Error from the SHARE-146 model and MR

Models. ( c© 2014, IEEE. 2016, AIMS)

Face Sizes SHARE-146 MR model

750x750 0.0911 0.0543

600x600 0.0914 0.0542

450x450 0.0912 0.0537

300x300 0.0922 0.0548

210x210 0.0902 0.0596

150x150 0.0930 0.0669

90x90 0.0920 0.0832

30x30 not detected 0.1225

Table 4.3: Detection Rate (%) from the SHARE-146 Model and MR Models. ( c© 2014,

IEEE. 2016, AIMS)

Face Sizes
5% IOD 10% IOD 20% IOD

S-146 MR S-146 MR S-146 MR

750x750 22.26 53.06 61.73 90.44 97.26 99.63

600x600 21.10 52.32 61.60 90.35 96.94 99.68

450x450 22.96 54.36 61.32 90.63 96.94 99.81

300x300 21.10 52.08 60.62 89.70 96.75 99.77

210x210 22.87 45.55 61.87 87.48 97.31 99.86

150x150 20.83 38.68 59.69 82.24 96.85 99.35

90x90 20.22 25.42 61.64 68.92 97.36 98.61

30x30 - 12.76 - 41.05 - 86.97

4.2.4 The MR Models VS Other State-of-the-art Approaches

In this section, we will compare the performance of the MR models and two other facial

landmarking approaches: the STASM (Milborrow and Nicolls, 2014) and the Intraface

(Xiong and De la Torre, 2013) with the Share-146 as the baseline performance. For an

easier comparison and better visualization, we summarized the results of the error rate

and detection rate as a line graph in Figure 4.10, 4.12, 4.13, and 4.14.

First, we observed the error rate in Figure 4.10. The MR models produces a slightly higher

error rate on low resolution faces, but perform really well on high resolution faces on a

par with the Intraface. The interesting result in this graph is the fact that the STASM

provides facial landmarks with the least error on small faces but extremely high error rate

on large faces. This seems unlikely to happen since large faces contain better information,

thus lead to more accurate facial landmarking as shown by both the MR models and the
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Figure 4.10: Relative error on PUT database.

Intraface. Since this is a peculiar case, we conducted a thorough examination and analysis

on the STASM. Our investigation revealed that the reason behind the large error rate is

its poor reliability on the accuracy of face detector.

Both the STASM and Intraface employed a well-known face detector approach by Viola and

Jones (2004) (section 2.2). For computation efficiency purpose, the STASM and Intraface

only attempt to detect facial landmarks on the region of face candidates detected by the

Viola Jones face detector. However, unlike the Intraface, the STASM does not handle false

detection well. The STASM imposes the facial landmarks even on the non-faces region.

As a consequence, it has tendency to produce outliers on the performance as the detected

facial landmarks might be located far from the facial components. Some examples can be

seen in Figure 4.11. Its performance could easily get worse on large images since there

is a higher chance to have more false face detection rate. Furthermore, this scenario

still happens even with the fact that all testing face images were taken in a controlled

environment.

The MR models and Share-146 can be applied without employing other face detectors

since they explore the whole image and select the best face candidate based on the highest

model score matching. However, for the sake of comparison, we also employed the Viola

Jones face detector first to see how well it can handle false detection. Our experiment

shows that there is no change on the performance (except for the faster computation

speed) which implies that both the MR models and Share-146 can distinguish faces and
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non-face regions well. They successfully ignored all the non-face regions due to not passing

the landmarks fitting score.

The next thing we observe is the detection rate on various thresholds. We start from the

smallest threshold 5% IOD in figure 4.12. It shows that the MR models detect landmarks

slightly less accurate compared to the other two approaches. However, the other two cases

of thresholds shown in figure 4.13 and 4.14 reveal the MR models’ comparable performance

and even better on high resolution faces. This is a strong indication that our proposed

MR models are still able to detect approximate locations of facial landmarks well in a

general situation, instead of imposing the landmarks on the ideal location but risking a

total misalignment.

The Intraface shows a consistent and stable performance with slight increasing perfor-

mance gradually along with the size of the faces. On the other hand, the STASM once

again displays a gradual declining detection rate as it reaches large size of images, the same

phenomena happened on the relative error rate. As expected, the false face detection rate

from the Viola Jones face detector affects the detection rate significantly. Even though

the STASM gives the best result on low resolution faces, the performance is not stable and

are easily influenced by false face detection from the the Viola Jones for high resolution

images.

In order to further demonstrate that the MR models are more robust against misalignment,

we conducted a thorough examination to discover some of the examples on 30x30 faces

where the Intraface and STASM encountered a significant issue as shown in figure 4.15.

By allowing a landmark on the chin to stretch over, it assists fitting other facial landmarks

of the MR models in the presence of beard or hair covering the eyebrows. Even though the

location of the detected landmarks might not be perfect, it is compensated by fitting them

on locations which are not too far off the mark to avoid full misalignment. We believe this

happens as our proposed adaptive landmarks scheme can only preserve some important

landmarks of facial components via reduction. On the other hand, the Intraface detects

the beard as the part of the mouth, thus totally shifting mouth landmarks down to chin

region. Furthermore, a slight occlusion around eyebrows creates a small-scale distortion on

the upper landmarks by the Intraface and a total landmarks disorientation by the STASM.
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Figure 4.11: STASM is susceptible to detecting facial landmarks incorrectly if it is em-

ployed on the non-face regions. Face detection with very high accuracy is required in this

case. ( c© 2016, AIMS)
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Figure 4.12: Detection rate on 5% IOD threshold.

Figure 4.13: Detection rate on 10% IOD threshold.
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Figure 4.14: Detection rate on 20% IOD threshold.

4.3 Summary

In this chapter, we proposed the Multi Resolutions (MR) models. The aim is to be able

to detect facial landmarks on small faces down to 30x30 since the previously developed

AR model was trained only based on large faces (approximately 300x300) and will fail for

small face images. As the original facial landmarks ground truth are too dense to fit on

small faces, we proposed an automatic adaptive landmark scheme to select the important

facial landmarks on various scales of face sizes. This allows us to train various face models

for various face resolutions while maintaining adequate amount of facial landmarks. We

chose to train the MR models on four sizes: 210x210, 150x150, 90x90, and 30x30.

The experiments were tested on 196 frontal face images from PUT database. The perfor-

mances were evaluated based on the error rate and detection rate of 11 important facial

landmarks. The first comparison is done on the Share-146 model as the baseline evalua-

tion. Our MR models outperform the Share-146 by significant margin. In addition, the

MR models are able to detect facial landmarks on the smallest face images of 30x30 on

which the Share-146 is incapable. Further experiments were conducted on two state-of-

the-art approaches, the STASM and Intraface. The results show that the MR model is

slightly less accurate on small faces, but comparable on large faces. Additional experi-

ments also show that the MR models are more robust against landmarks misalignment on

the presence of beard and hair. Even though the STASM gives the best accuracy on small
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Figure 4.15: Examples of facial landmarks misalignments which occur on Intraface

(second column) and STASM (third column) with 30x30 faces. Despite slightly less

accurate, MR models have a major advantage of robustness against misalignment on facial

components especially with the presence of beard and slight occlusion of eyebrows. ( c©
2016, AIMS)
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faces, it is very sensitive on false face detection rate which leads to rapid fall on accuracy

for large face images.

Despite the capability of the MR models to extract facial landmarks, it has only been

tested on face images taken in controlled environment. The quality of these images are clear

without significant noises/background which reduces the chance of false face detection rate.

Furthermore, it is also known that each image only contains one face which makes the facial

landmarking approach a bit easier since it just needs to select the best landmarks fitting

(score). This ideal scenario will not happen on images taken on uncontrolled environment

where the background might hinder face detection rate and there might multiple faces

present on various resolutions. Therefore, we will investigate this issue by proposing a

better face detection approach to act as pre-processing phase prior to facial landmarking

in chapter 5.
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Chapter 5

Fast and Effective Face Detector

The face detector approach developed by Viola and Jones (2004) is well-known to be robust

and efficient due to its effective features and practical framework design (Section 2.2).

This approach has been widely employed by some face-related applications including the

STASM (Milborrow and Nicolls, 2014) and Intraface (Xiong and De la Torre, 2013) in the

previous chapter. However, even with its real-time and accurate detection of ”promising”

face regions, the Viola Jones detector is still prone to high false positives as observed in

last chapter in some controlled situation with different resolutions and this will be even

worse on the uncontrolled environment.

As discussed in chapter 4, the MR models are capable of discovering the location of faces

by performing full-scale scanning of the whole image, the similar approach is used in the

Share-146 face models by Zhu and Ramanan (2012a). However, this method requires high

computational time and is at higher risk of detecting false positives especially on cluttered

background regions. If we assume that the approximate location and size of face regions

are known beforehand, we can reduce such false positive rates significantly as shown in

this chapter. In fact, we can identify the approximate location in low resolution by using

the MR models and this low resolution detector also will reduce redundant computation.

Therefore, there is a need to employ a reliable and efficient face detector prior to facial

landmarking phase. This motivates us to propose an alternative way to utilize the tree-

structured face models for filtering false face detection. We refer this face detection model

as the Tree-structured Filter Model (TFM).

The experiments were tested on face images taken in uncontrolled environment. We first

evaluate the performance of TFM combined with the Viola Jones detector based on the

face detection accuracy. We compare it with the Viola Jones face detector and Share-146.

This evaluation was tested on Face Detection Data set and Benchmark (FDDB) database

(Jain and Learned-Miller, 2010) which provides sophisticated ground truth information of

face locations along with the source code to produce the Receiver Operating Characteristic

(ROC) curve. Hereafter, we will integrate the Viola Jones & TFM with the previously

proposed MR models as a complete facial landmarking framework. We conducted another

experiment on Annotated Facial Landmarks in the Wild (AFLW) (Koestinger et al., 2011a)
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database. Due to our research scope being focused on frontal faces, we manually choose

considerably large amount of images containing only frontal/near-frontal face(s) from both

databases. Finally, an additional experiment was conducted to assess the impact of image

size on the growth of computational time for our proposed integrated system compared

with the Share-146 face models.

The structure of this chapter is as follows. Section 5.1 describes the methodology of

training TFM along with the corresponding performance evaluation. We then combine

the proposed TFM with Viola Jones detector and the proposed MR models as an integrated

facial landmarking framework in Section 5.2. The summary is addressed in Section 5.3.

5.1 The Tree-structured Filter Model (TFM)

The idea of combining the TFM with the Viola Jones face detector was inspired by two

observations. First, the Viola Jones face detector detects face with high true positive rate

in real-time. However, it comes with a lot of false positive in some situations. Second,

the Tree-structured face models such as the Share-146 or Independent-1050 by Zhu and

Ramanan (2012a) can distinguish false face detection better, but with the cost of signif-

icantly high computational time. Therefore, we would try to combine the advantages of

both approaches to compensate the shortcomings of each other. We first apply the Viola

Jones face detector for real-time detection and apply the proposed TFM to discard false

positives. For a better visualization, we will provide an example for application of the

Viola Jones & TFM combined with the MR models in Figure 5.1.

Accurate landmarks detection is not the main purpose of TFM. Instead, it was developed

to detect the presence of faces by attempting facial landmarks fitting. Furthermore, we

would like to design TFM to be lightweight by utilizing low resolution training faces and

restricted amount of landmarks with an aim to capture the intuitive descriptions of frontal

human faces efficiently. All face candidates from the Viola Jones detector are scaled down

to 40x40 prior to passing it to the TFM to avoid high processing overhead. If the face

candidates pass the filtering selection, then it is ready for facial landmarking phase (in

original size, not 40x40 anymore). The pseudo code for our proposed scheme is shown in

algorithm 5.1. After extensive testing, we choose 3 sub-windows as the merging threshold

for the Viola Jones detector to achieves high rate of initial true positives and -1.10 as

the landmarks matching score threshold for the TFM to remove false detections while

preserving most of the correct detections.
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Figure 5.1: This is the illustration on how the Viola Jones (VJ) face detector performs

together with Tree-structured Filter Model (TFM) concluded with facial landmarking

by MR models. In this particular example, VJ successfully detect all 4 faces, but with

the expense of 7 false positives. TFM then rapidly examines all the face candidates,

successfully removing 6 false detections while maintaining all true detections. The last

false positive is then disregarded by MR models. Since TFM has removed most of false

detection quickly, it reduces the workload of MR models. ( c© 2014, IEEE)
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Algorithm 5.1 Face Detection with Viola Jones (VJ) face detector and the proposed

Tree-structured Filter Model (TFM). ( c© 2016, AIMS)

1: procedure Detect Faces(img) . img is the face image query

V J threshold← 3; . minimum 3 merging bounding boxes

TFM threshold← −1.1;

V J faces← []

final faces← []

2: V J faces← V J(img, V J threshold) . detect faces with VJ approach

3: if V J faces is not empty then

4: n← length(V J faces) . n is the number of faces detected

5: for i = 1 to n do

6: face← crop(V J faces(i)) . crop only the face region

7: face← rescale(face, 40, 40) . resize the face into 40x40 pixels

8: score← TFM(face) . verify the face with TFM

9: if score ≥ TFM threshold then

10: final faces← final faces+ face . accumulate faces that pass the

TFM threshold

11: end if

12: end for

13: else

14: print ”no face detected in this image.”

15: end if

16: return final faces

17: end procedure
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5.1.1 Model Training

The source code to train the TFM is publicly available (Zhu and Ramanan, 2012b). The

TFM is almost similar to the MR-14 model with the same training dataset (Section 4.1.2)

which are frontal faces of 112 subjects from AR database (Mart́ınez and Benavente, 1998)

scaled down to 10% resolution scale level (face size ≈ 30x30) along with the facial land-

marks in ground truth (Ding and Martinez, 2010). However, there are three distinct

changes compared to the MR-14 model. First, we only choose 12 landmarks to represent

facial components as an indication of face presence. These landmarks consist of 2 eyebrow

centres, 2 eye centres, 1 nose tip, 2 mouth corners, and 5 landmarks along the jawline.

Second, we use less variation of facial expressions. Only neutral and scream expression

are involved in the training (2 expressions x 112 faces = 224 training face images). Lastly,

in addition to 1218 images from INRIA dataset (Dalal and Triggs, 2005), random 1650

small-scale non-face images were added to negative training image set to further improve

its performance to distinguish between faces and non-faces. The visualization of TFM and

the corresponding tree structure can be seen in Figure 5.2.

5.1.2 Experiment Setup

We conducted the experiments on FDDB database (Jain and Learned-Miller, 2010). As

mentioned in (Section 2.5.2.1), this database is suitable for evaluating face detection ap-

proaches with its well-made face ground truth and evaluation framework. Since our scope

is on frontal faces only, 1535 images were manually chosen containing 2130 frontal/near-

frontal faces (Figure 5.3).

The proposed combination of the Viola Jones & TFM is compared with the Viola Jones

itself and Share-146 model. We did not integrate the MR models in this experiment

since we want to measure the performance of proposed TFM. The Share-146 by Zhu and

Ramanan (2012a) was once again chosen because of its capability to detect smaller faces

(down to approximately 80x80). Since the Share-146 contains 13 models on various poses,

we speculated that it might have an impact of detecting more faces, thus with possibility of

increasing the chance of false detection on cluttered background. Therefore, we performed

the evaluation of Share-146 on two scenarios: 1) the Share-146 with all 13 models and

2) the Share-146 with frontal face model only. We expect that the Share-146 with only a

single frontal face model will perform with less false positives.

Evaluation on FDDB is based on the Receiver Operating Characteristic (ROC) curve to
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Figure 5.2: Visualization of TFM on neutral (left) and scream (right) facial expressions.

( c© 2014, IEEE. 2016, AIMS)
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Figure 5.3: Some chosen frontal faces from FDDB database. ( c© 2016, AIMS)

plot the relation between true positive rate and false positive rate on various scores. We

sort the true positive rate and false positive rate from the highest score to the lowest

score for each technique. The score for the TFM and Share-146 is defined as the feature

matching score described in the source code (Zhu and Ramanan, 2012b). We chose -1.1

and -0.75 as the minimum threshold for the TFM and Share-146 respectively. On the other

hand, we define the score of the Viola Jones detector based on the amount of overlapping

detection sub-windows merged together as a single face subwindow (Mat, 2012).

Ground truth comparison in FDDB is based on two types of metrics: discrete score and

continuous score. The continuous score depends on the degree of match between the

detected sub-window and ground truth which is defined as ratio between intersecting and

joined region. For discrete score, a face is considered detected if the intersecting area

is greater than 50% of the joined area. We only emphasize on discrete score since our

main concern is on the presence of faces. We passed the detected rectangle sub-windows

from each approach into the source code provided. The sub-windows from the Viola

Jones detector were expanded approximately 30% to each side to ensure the faces were

sufficiently covered for facial landmarking phase. Meanwhile, since the Share-146 can also

detect the landmarks simultaneously, the detection sub-window is based on the border

of the landmarks with the nose tip at the center to cover forehead region better. The

examples can be seen in Figure 5.4.

5.1.3 Experiment Results

The ROC curves for all these face detectors are shown in Figure 5.5. One can see that the

Viola Jones detector (VJ) achieves the highest detection rate, but also with the highest

rate of false detection. This performance serves as the baseline performance. The Share-

146 model is able to detect with significantly fewer false positives with a slight reduction
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Figure 5.4: (Left) An example of query. (Top right) A face detected by Viola Jones

and expanded prior to filtering by TFM. The subwindow is expanded to ensure sufficient

coverage of the whole face for the facial landmarking phase. (Bottom right) A subwindow

of a face detected by Share-146 model. It is cropped based on the edge of landmarks and

nose tip as a central part to include forehead region.

on true detection rate. As we expected, involving all 13 pose face models in the Share-146

makes it more susceptible to false positives. By focusing only on a frontal face model, the

Share-146 can reduce the false positives even more with a small drop in detection rate.

However, it can be seen clearly that the combination of the Viola Jones and our proposed

TFM outperforms all other approaches by detecting the least amount of false positives

while maintaining high detection rate with only a slight reduction. Some examples on the

TFM removing false positives can be seen in Figure 5.7.

In addition to the ROC curve, we also measured the average processing time for each

approach. We only consider a single frontal face model for the Share-146. The result is

plotted in Figure 5.6. The Share-146 considerably requires much more processing time

since it has to scan the whole image to simultaneously fit the facial landmarks. Since the

TFM only focuses on face candidate regions passed by the Viola Jones detector, it does

not give too much burden in the processing time.

5.2 Facial Landmarking System

After successful experiments on the TFM, we integrated it with the MR models to form

a complete facial landmarking system as shown in Figure 5.8. This integrated system is

now able to perform facial landmarking on multiple frontal faces in various resolutions

captured in uncontrolled environment.
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Figure 5.5: ROC (Receiver Operating Characteristic) Curve for Various Face Detectors.

5.2.1 Comparison with the Share-146

AFLW database (Koestinger et al., 2011a) was chosen as testing dataset for our proposed

facial landmarking system. As described in Section 2.5.2.2, this dataset contains a large

amount of random face images suitable for real-life applications. In order to test on

frontal/near-frontal faces only, we manually selected 200 images containing 687 faces.

Most of these images contain multiple faces, some even in various resolutions (Figure 5.9).

Initially, we want to evaluate the performance based on landmark accuracy. Unfortunately,

the ground truth provided in AFLW database lacks of accuracy and also has no sufficient

quantity which makes it difficult to compare with (Figure 5.10). Alternatively, we manually

count the number of faces which have been landmarked properly and false detection. The

results are shown in Table 5.1. It shows that our proposed system outperforms the Share-

146 model by a large margin on both true and false detection rate. Some visual results

for comparisons can be seen in Figure 5.11.

5.2.2 Speed Comparison

Finally, we conducted an experiment to measure the growth of computational time as the

image size gets larger. The purpose of this experiment is to show the advantage of having
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Figure 5.6: Time Comparison between VJ, VJ+TFM, and SHARE-146.

face detection (VJ + TFM) prior to facial landmarking approach. By focusing on the

promising face candidates, processing time will be much less for the small size of the facial

regions. On the other hand, even though the Share-146 was designed for better efficiency

(Zhu and Ramanan, 2012a), it still needs to scan the whole image with extensive time

cost.

In this experiment, we compare the Share-146 (frontal face model only) and our proposed

system with the MR-36 (36 x 4 expressions = 144) since they both contain similar amount

of facial landmarks. They were tested on two different scenarios (Figure 5.12). The first

Table 5.1: True Positive and False Positive on AFLW Database from the SHARE-146

Model (all 13 poses and single pose) and MR Models. ( c© 2016, AIMS)

True Positive False Positive

SHARE-146 473 (68.85%) 139

SHARE-146 (Frontal Only) 442 (64.34%) 7

VJ + TFM + MR 597 (86.90%) 2
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Figure 5.7: (Left) The face candidates detected by Viola Jones detector. (Right) False

positives are removed by our proposed TFM. ( c© 2016, AIMS)
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Figure 5.8: The integrated system combined from Viola Jones detector, TFM, and MR

models. ( c© 2016, AIMS)

92



Figure 5.9: Chosen images from AFLW database. ( c© 2016, AIMS)

Figure 5.10: (Left) Some faces might not have landmarks ground truth. (Right) Some

ground truth are not sufficiently accurate for comparison. ( c© 2016, AIMS)
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Figure 5.11: Images on the left column are detected by Share-146 model (frontal model

only), while the ones on the right column are detected by our proposed system. Share-146

miss the small faces and a false positive is detected on the background. ( c© 2016, AIMS)

94



scenario is the case where the face occupies a small segment of the whole image (original

size 579x389). On the other hand, the second scenario involves faces occupying large

portion of the image (approximately 40% in this example) (original size 500x335). Both

images were interpolated on 5 scale levels: 100% (original), 200%, 300%, 400%, and 500%.

Figure 5.12: (Left) Face region occupy a very small portion of the image. (Right) Faces

occupy a large portion of the image (approximately 40%). ( c© 2016, AIMS)

We first observe the result on first scenario in Figure 5.13. As expected, the processing

time of Share-146 escalates quickly from 7.7 to 202.5 seconds in 500% scale level. In

comparison, our proposed system is not significantly affected by it.

Figure 5.13: Speed comparison on a face on small segment of the image (first scenario).

( c© 2016, AIMS)

The second scenario is where the performance gap is much less. As shown in Figure 5.14,
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our proposed system becomes significantly slow as the image gets larger even though it is

still better than the Share-146. Since the face regions are large, scaling up the images still

significantly increases the amount of data to be processed. Fortunately, this can be solved

simply by fixing the size of the face regions in a compatible size with the corresponding MR

models regardless the size of the image. For instance, the MR-36 can detect landmarks on

faces with size at least 90x90. Despite its capability to handle much larger faces, it just

leads to redundant processing. In this experiment, we fixed the size in a slightly larger

resolution 150x150. As can be observed in Figure 5.15, this method significantly reduces

the growth rate in any image resolution.

Figure 5.14: Speed comparison on faces on large segment of the image (second scenario).

( c© 2016, AIMS)

5.3 Summary

In this chapter, we proposed a Tree-structured Filter Model (TFM) to act as a filter

to discard as many false positives as possible from the Viola Jones face detector while

preserving high rate of correct detections. The TFM was trained on low resolution faces

(resolution ≈ 30x30) from AR database with restricted amount of landmarks and facial

expressions. The chosen landmarks are 2 eyebrows, 2 eyes, 1 nose tip, 2 mouth corners,

and 5 on jawline as to depict intuitive description of frontal human faces. It consists

of only neutral and scream expressions. The reason for this restriction is to produce a

lightweight model with low computation requirement. All face candidates detected by the
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Figure 5.15: Speed comparison after scaling down faces to 150x150 on MR-36 models

(second scenario). ( c© 2016, AIMS)

Viola Jones detector were scaled down to 40x40 to make it compatible with TFM since it

was trained on small faces and simultaneously limit the amount of data to be processed

for efficiency. Finally, the proposed TFM along with the Viola Jones detector complement

MR models (Chapter 4) as an integrated facial landmarking system.

We conducted the experiments on two uncontrolled databases. We manually handpicked

images containing only frontal/near-frontal face(s) due to the scope of our research. The

first one is FDDB database which is suitable for evaluating face detection approaches.

We compare the capability of TFM with the Viola Jones detector and Share-146 model.

The result shows that combination of the Viola Jones detector and TFM outperforms

other approaches with the lowest amount of false positives. For the next experiment,

we evaluated the proposed integrated facial landmarking system in comparison with the

Share-146 on AFLW database. The results clearly indicate a higher detection rate with

lower false detections for the proposed system. Lastly, we conducted an experiment to

show how the face pre-detection can reduce the processing time.
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Chapter 6

Glasses Detection and Removal for

Face Recognition and Verification

As the glasses/spectacles are widely worn for either fashion or visual problems (e.g short-

sighted), the high usage of glasses is common in real world (Gao et al., 2008). Therefore,

the presence of glasses can be considered as a face semantic feature. For instance, Alat-

tab and Kareem (2013) and Vaquero et al. (2009) have proposed semantic-based image

retrieval involving glasses as one of the features. Since our previous experiments have

shown that the concept of pictorial-tree-structured models can produce satisfactory per-

formances in the context of detection rate and landmarking of the object of interest (frontal

human faces for our cases), we would like to extend this usage into glasses as detection

object. With these glasses models, we can detect the presence and location of a glasses

on frontal faces and then manage to remove them in order to improve facial recognition

performance. We believe this is necessary since the presence of glasses has a potential to

negatively impact recognition proficiency (Righi et al., 2012).

To the best of our knowledge, there are a few number of researches conducted on glasses-

related applications in pattern recognition and computer vision community in the last

two decades. Jiang et al. (2000) might be one of the earliest attempts to detect the

presence of the glasses. Their approach is based on the level of intensity differences

measurement surrounding the eyes. Their assumption is that it is high likely for glasses

to have significantly different colour compared to facial skin, leading to a high level of

intensity discontinuity around eyes, indicating its presence. Another approach proposed

in the same period was proposed by Jing et al. (2000) via incorporating the Bayes rule

on edge features extracted from Sobel filter. Furthermore, they attempted to remove

the contour of the glasses by applying adaptive median filter. A few years later, Wu

et al. (2004) adopted the idea of Markov-chain Monte Carlo technique for localizing the

glasses segment and passing it through reconstruction process to remove the glasses for

image synthesizing purpose. In spite of the significant performances on glasses detection

and removal by these approaches, it is still limited to visual perception. There is no

experiment conducted to measure the effect of their approaches on facial recognition.
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However, there are other implementations with the aim of improving facial recognition

rate. For instance, Wang et al. (2010) proposed an idea to localize glasses with Active

Appearance Model (AAM) technique (Cootes et al., 2001) and remove it via reconstruction

process with PCA (Turk and Pentland, 1991). Despite a significant improvement made on

the accuracy of facial recognition, there is no experiment to evaluate its glasses detection

accuracy which determines whether a person is wearing a glasses or not. Another unique

approach was proposed by Heo et al. (2004) where they combined the information from

both visible features (pixel values) and thermal infrared (IR) images. This idea of utilizing

thermal infrared was extended further by Wong and Zhao (2013) by attempting facial

reconstruction on infrared space relying on the information around the eyes from the

normal image. This novel way of including extra data from thermal infrared images shows

a significant performance improvement, however it creates a restriction to have a specific

device used for capturing thermal infrared images. We believe it is more preferable to

focus only on colour/grey-scale images since they are more widely available.

Therefore, we intend to develop a complete autonomous glasses detection and landmark-

ing which works on any frontal face images in this chapter. Furthermore, we remove the

presence of the glasses based on the extracted landmarks with the aim to improve the

facial classification performance. We achieved this by integrating our proposed glasses

models with image reconstruction techniques: the NLCTV inpainting (Duan et al., 2015)

and SFDAE Deep Learning model (Pathirage et al., 2015) (as mentioned in Section 2.3).

We want to develop a system which can detect the presence and location of glasses au-

tomatically without assuming its existence (able to distinguish faces with and without

glasses). Since it is difficult to find publicly available database specifically designed for

glasses model training, we compiled various glasses and non-glasses images from CMU

multiPIE (Gross et al., 2010) as training dataset.

The robustness of our proposed glasses models is evaluated on various face databases. We

apply our models on a large collection of face images with and without glasses. Afterwards,

we evaluate the facial classification (recognition and verification) performance of the whole

system based on three well-known classification techniques PCA (Turk and Pentland,

1991), LDA (Belhumeur et al., 1997), and SRC (Wright et al., 2009) as mentioned in

Section 2.4.

The structure of this chapter is as follows. Section 6.1 describes the overview of our

proposed glasses detection/landmarking and removal framework. It includes the training

setup for the proposed glasses models along with the glasses images data we manually

selected. Section 6.2 describes the setup of performance evaluations. We conduct experi-

ments on glasses detection rate of our proposed glasses models and observe the impact of
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glasses removal on facial classifications: recognition and verification. Lastly, the summary

of this chapter is discussed in Section 6.3.

6.1 Framework

Our proposed system consists of two major parts: glasses detection/landmarking and

glasses removal/reconstruction. In order to conduct the first part, we proposed a tree-

structured glasses model as an alternative utility of face models by Zhu and Ramanan

(2012a). We need to detect the presence of the glasses since attempting to reconstruct

non-glasses faces is redundant or even negatively impacts facial recognition. Location

information provided by the landmarks produced by these models are used to generate an

image masking layer as a pre-processing stage prior to reconstructing glasses region. In

the second part, we apply the image reconstruction approaches (the NLCTV inpainting

(Duan et al., 2015) and SFDAE Deep Learning model (Pathirage et al., 2015)) described

in Section 2.3 to remove glasses.

6.1.1 Face Alignment

Prior to glasses detection, we need to detect the presence and location of the face. It is

essential to align the faces by ensuring equal face proportion and dimension for all query

face images which is required to commence holistic face classification. In addition, this

leads to an easier and more efficient glasses detection since we can restrict the search on

the upper face region. The face alignment is done via a few basic transformations such as

rotation, cropping, and resizing. All faces were scaled down to 360x320 with both eyes and

mouth centres as parameters at specific locations. In this case, the chosen locations were

inspired by face proportion in art done by MacTaggart (2000). In detail, we can assume

that the origin coordinates are located in the top left corner of an image, we adjust the

position of eyes at the proportion of 3
10 and 7

10 horizontally and 1
3 vertically. The average of

eye centres defines the horizontal position of mouth centre. Lastly, the vertical proportion

for mouth centre is located at 10
13 . The visualization of our facial alignment proportion can

be seen in Figure 6.1.
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Figure 6.1: Aligned face based on the proportion of eye centres and mouth centre. The

face is then scaled to 360x320. ( c© 2015, IEEE)
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6.1.2 Glasses Model

As far as we know, there is no publicly available database specifically focused on glasses

complemented with the corresponding landmarks in ground truth. Therefore, we have

to manually choose some glasses-wearer face images ourselves and created the glasses

landmarks. The images were extracted from CMU Multi-PIE database (Gross et al.,

2010). 100 neutral faces with glasses images were selected as the positive training set.

This set contains 50 images with oval-shaped frame and other 50 with rectangle-shaped

with round corner. We train two glasses models for both shapes. On the other hand,

we did not use the same negative training set (the non-face images from INRIA database

(Dalal and Triggs, 2005)) as in previous chapters’ experiment. Since previous chapters

emphasize on detecting/landmarking faces, it is reasonable to utilize the non-faces images

to derive the false samples. However, the situation here is totally different for glasses. If

we use the non-faces images as negative samples, the glasses models can not distinguish

between glasses and non-glasses faces well which makes the whole framework not working

properly. Instead, we selected 536 non-glasses neutral faces from the same database and

cropped the region around the eyes as the negative training set. Due to the restriction of

the publication of the faces, we can only show the examples of glasses we chose in Figure

6.2.

Figure 6.2: Two chosen glasses shapes: (Top) Oval (Bottom) Rectangle. ( c© 2015, IEEE)

Unlike facial landmarks, we could not find glasses landmarks in ground truth available for

our model training. So, we had to manually create our own ground truth for those 100

positive training images. Each pair of glasses contains 39 landmarks with the distribution:

32 landmarks along both rims, 3 landmarks on the bridge between rims, and 4 landmarks

on both hinges as shown in Figure 6.3. Furthermore, in order to have a more balanced
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and consistent landmarking on the rims, we avoid pinpointing the landmarks in circular

order directly. Instead, we did it in a hierarchy manner. We first appointed 4 landmarks

on 4 orientations: leftmost, rightmost, top, and bottom corresponding to the center of the

rim. This is to ensure a proper calibration of initial landmarks to adjust the balance of

landmarks distribution. The next step is to insert a new landmark between two appointed

landmarks to add 4 more landmarks in diagonal directions. Repeating this step one

last time will eventually result in approximately uniform-distributed 16 landmarks. The

process can be seen in Figure 6.4. With all these landmarks ground truth and the training

dataset, we can train our tree-structured glasses models as shown in Figure 6.5.

Figure 6.3: Our own created 39 glasses landmarks ground truth. ( c© 2015, IEEE)

Figure 6.4: The process of appointing 16 landmarks on a rim. (1) 4 landmarks on the

left, right, top, and bottom position. (2) A landmark is added in the middle of each pair

of previous landmarks. (3) Repeat the last procedure once more to pinpoint the final

landmarks. ( c© 2015, IEEE)

6.1.3 Masking

Based on the extracted landmarks, we create an additional layer of mask to indicate

the location of glasses regions. This information is required in employing the NLCTV

inpainting approach to reconstruct the glasses segments. The mask was derived by linking

all the adjacent landmarks with linear interpolation (straight line) between each pair.
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Figure 6.5: Our proposed glasses models. The first model is an oval-shaped glasses while

the other one is a rectangle-shaped glasses. ( c© 2015, IEEE)

Since this will create a jagged surface, we smoothed the mask by adopting the Piecewise

Cubic Hermite Interpolating Polynomial (PCHIP) interpolation (Kahaner et al., 1989;

Fritsch and Carlson, 1980; Moler, 2008). The visualization between the original mask

and smoothed mask can be seen in Figure 6.6. Furthermore, in order to enhance the

coverage around nose pad and bridge, we added another layer of a slightly wider mask.

This additional layer also covers shadow on the lower rim for some cases. An example of

a combined set of mask layers can be seen in Figure 6.7.

6.1.4 The Complete Framework

The glasses removal was conducted by recovering the region of interest via image recon-

struction techniques as described in Section 2.3. We utilized two state-of-the-art image

reconstruction techniques: the Non-Local Colour Total Variation (NLCTV) inpainting

(Duan et al., 2015) and Stacked Face De-noising Auto Encoders (SFDAE) Deep Learning

model (Pathirage et al., 2015). We arrange these approaches in a ”cascade” structure

starting with the NLCTV followed by SFDAE to act as a double-layered filters to remove

the ”noise” on the face images (Figure 6.8). In our case, the presence of glasses is con-

sidered as noise and thus should be removed. Since the NLCTV inpainting has removed

most traces of the glasses, the de-noising phase will make it more accurate, for example,

slight light reflection on the lenses can be removed.
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Figure 6.6: Masks derived by (Top) linear interpolation and (Bottom) PieceWise Cubic

Hermite Interpolating Polynomial (PCHIP) interpolation. ( c© 2015, IEEE)

Figure 6.7: (Left) First layer of mask covering all base parts of glasses. (Middle) Addi-

tional layer of mask to cover nose pad, bridge, and lower rim. (Right) Combination of

both layers of mask. ( c© 2015, IEEE)
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Figure 6.8: 2 state-of-the-art image reconsruction methods (NLCTV inpainting & SFDAE

Deep Learning model) structured in a ”cascade” manner to filter the presence of glasses

consecutively.

The whole framework is summarized in Figure 6.9. It consists of four stages (1) Face

alignment via face landmarking with the AR/MR-130 models as a pre-processing phase

(2) Glasses presence detection and landmarking with our proposed glasses models (3)

First phase of glasses removal process via reconstruction by NLCTV inpainting with the

help from the mask as the NLCTV inpainting approach requires the boundary information.

As observed in Figure 6.10, it demonstrates how it considers the glasses segment as noise

and reconstructs it based on the surrounding skin texture. (4) The Second phase of glasses

removal process via reconstruction by the SFDAE Deep Learning to remove last traces of

glasses and slight light reflection as shown in Figure 6.11. Since the SFDAE is a patch-

based approach, the face images from NLCTV inpainting have to be pre-processed. We

first apply Histogram Equalization to normalize the illumination in the image. We then

resize the image into 66x66 and divide the image with patch of size 6x6 resulting in 11x11

patches. Please be advised that the reconstructed image is only to visualize the result of

glasses removal. We will use the low-dimensional features extracted from the de-noising

layer f2 (second hidden layer) for face classification as mentioned in Section 2.3.2.

6.2 Experiments

We conducted a few experiments to evaluate the performance on various stages of our

proposed system. Basically, it evaluates on two major parts: glasses detection/landmarking

and impact of glasses removal/reconstruction for face recognition. For the first part, we

assessed the capability of our proposed glasses models to detect the presence of glasses on

a face on various databases. The next stage was tested based on the improvement of facial

recognition and verification.
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Figure 6.9: Our proposed glasses detection + removal system. ( c© 2015, IEEE)
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Figure 6.10: This is the iterative process of NLCTV inpainting on glasses. The image on

top left is the original face image with glasses. The next image shows the mask generated

from the glasses landmarks which is then gradually reconstructed along with the glasses.
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Figure 6.11: (Left) Aligned face images wearing glasses (Middle) Face images after

NLCTV inpainting (Right) Face images after reconstruction via NLCTV inpainting +

SFDAE Deep Learning model. All images in this example are contrast normalized through

histogram equalization method and scaled down to 66x66. ( c© 2015, IEEE)
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6.2.1 Glasses Detection/Landmarking

For this experiment, we selected frontal neutral faces from 6 face databases: CAS-PEAL-

R1 (Gao et al., 2008), CurtinFaces (Li et al., 2013), AR (Mart́ınez and Benavente, 1998),

FEI (OLIVEIRA JR and Thomaz, 2006), PUT (Kasinski et al., 2008), and BU-4D (Yin

et al., 2008). As summarized in Table 6.1, each database has different amount of face

images with glasses. The selected dataset is mainly dominated by CAS-PEAL-R1 due

to its large number of participants and particular session on various glasses. Initially,

there are 438 subjects participating on wearing glasses. However, some of the images are

affected by strong illumination on the lenses occluding significant part of the eyes. In

order to avoid unfairness, we did a thorough selection resulting in 340 chosen subjects. As

mentioned in Section 2.5.1.7, the accessories section consists of 3 different glasses. We only

choose 2 images for each participant because the last one is sunglasses in some occasions

which is not in the scope of our research.

Table 6.1: Information on chosen face images on various databases. ( c© 2015, IEEE)

CAS-PEAL-R1 CurtinFaces AR FEI PUT BU-4D

People 340 52 136 200 100 101

No. Images 1020 104 136 200 100 101

Glasses 680 19 40 8 0 0

Non-Glasses 340 85 96 192 100 101

Since this is an experiment about glasses detection/landmarking, we cropped all the

aligned query faces further to focus on the eye region. This is useful since we can avoid

redundant computation and reduce the chance of false detection on the non-eye region.

The range we chose is from row 61 to 200 and the whole 320 columns. All the cropped

images were tested with matching score threshold −0.54. The result of our proposed

glasses model is summarized in Table 6.2. Our proposed glasses models achieved close

to perfection in distinguishing face images with glasses or non-glasses. There is only one

missed detection from FEI database as shown in Figure 6.12. Our investigation revealed

that particular glasses is actually rimless, thus causing the level of intensity differences of

the glasses edges too faint. This result is justifiable since our proposed glasses models rely

on edge information (HOG features (Dalal and Triggs, 2005)) which makes it difficult to

fit these glasses landmarks, hence producing a low matching score.
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Table 6.2: Glasses detection rate on various databases. ( c© 2015, IEEE)

True Positive True Negative

CAS-PEAL-R1 680/680 (100%) 340/340 (100%)

CurtinFaces 19/19 (100%) 85/85 (100%)

AR 40/40 (100%) 96/96 (100%)

FEI 7/8 (87.5%) 192/192 (100%)

PUT 0/0 (N/A) 100/100 (100%)

BU-4D 0/0 (N/A) 101/101 (100%)

Figure 6.12: Since this is a rimless glasses, the edge features are too faint to consider it

as a glasses. ( c© 2015, IEEE)

6.2.2 Glasses Removal/Reconstruction

The second part of our experiment is to evaluate the impact of glasses removal on face

classification. More specifically, we performed facial recognition and verification. We only

use the images from CAS-PEAL-R1 database for training, gallery, and testing set since it

contains the largest amount of faces wearing glasses among other databases.

6.2.2.1 Inpainting

Prior to conducting facial classification evaluations, we did an evaluation on the NLCTV

inpainting. Even though Figure 6.10 has shown how NLCTV inpainting can remove the

glasses visually (image synthesis), we did not measure the result numerically for analysis.

Therefore, we conducted an experiment to measure the impact of NLCTV inpainting in

reducing the gap between the reconstructed faces and original non-glasses faces.
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In this experiment, we choose 340 frontal non-glasses faces from CAS-PEAL-R1 explained

in Section 6.2.1 as the gallery set. However, we did not use the set of faces with glasses

since there ought to be a slight difference on various face parts despite being compared

with the same subject. Since we want to measure the difference only from the glasses,

these images can not be used. Instead, we created synthetic face images via incorporating

additional layer of glasses on top of the face. We extracted two types of glasses: thin

silver and thick dark through image editing software Photoshop and placed them on the

eye region for each subject. The process of producing these synthetic images can be done

automatically in face alignment (Section 6.1.1). The examples can be seen in Figure 6.13.

In such a way, we can ensure the difference only comes from the glasses for accurate

measurement.

Figure 6.13: (Left) Original image without glasses (Middle) First synthetic data with

thin silver glasses (Right) Second synthetic data with thick dark glasses. ( c© 2015, IEEE)

We applied our proposed glasses models to both types of glasses and removed them with

the NLCTV inpainting. We then measured the mean of l2-norm distance (Euclidean)

between the synthetic data (both glasses and inpainted) and the original faces. The result

is summarized in Table 6.3. It can be observed that inpainted glasses reduced the distance

by approximately 42.28% and 61.94% for thin and thick glasses respectively. With this

performance, we believe this will bring a positive impact towards face classification and

makes it easier for reconstruction process with the SFDAE model.

Table 6.3: Average Euclidean distance between the synthetic data and neutral frontal face

images. ( c© 2015, IEEE)

Glasses Inpainted

Thin 7409.41 4276.38

Thick 14764.35 5619.91
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6.2.2.2 Face Recognition

We use the same collection of face images of 340 subjects from CAS-PEAL-R1 as exper-

iments in Section 6.2.1. We conducted this experiment with a cross-identity setup. It

means that training image set and gallery/testing image set will not share the same sub-

ject. Training set consists of 4 non-glasses images including neutral face per subject to

train the transformation function of SFDAE. The non-neutral facial expressions are con-

sidered as ’noisy’ faces, and we want to train the SFDAE model to reconstruct them into

neutral faces via supervised learning. The trained model is used to attempt further recon-

struction to remove the remaining traces of glasses after inpainting. In total, we choose

98 subjects in this set. On the other hand, the testing involves one neutral face image

as the gallery and two glasses images as the query from each identity for the remaining

242 subjects. The illustration of the experiment setup can be seen in Figure 6.14. We

investigated the results on three scenarios: face with glasses, inpainted glasses (NLCTV),

and reconstructed glasses (NLCTV + SFDAE).

As mentioned in Section 2.4, we utilized 3 well-known linear classifier approaches to mea-

sure facial recognition rate: PCA (Turk and Pentland, 1991), LDA (Belhumeur et al.,

1997), and SRC (Wright et al., 2009). The result is summarized in Figure 6.15. As can

be expected, faces with the presence of glasses achieve the lowest performance. Since

glasses add unnecessary noises, it disrupts the classification process. Inpainted glasses

appear to provide slight improvement towards recognition rate. Our observation suggests

two possibilities for this result. First, due to the restricted availability of data, we can

only use CAS-PEAL-R1 which contains only grey-scale images. However, the NLCTV

inpainting is able to reconstruct the image texture based on the color information, its

full potential could not be utilized in this case. Second, the proportion of the inpainted

area compared to the size of the whole face is relatively small. Even though the result is

better, the changes only affect local parts of the face (around eyes). This why we added

another layer of glasses filter via the SFDAE model. Its de-noising process covers the

whole face including glasses regions. In addition, since the NLCTV has removed most of

the glasses segments, it makes it easier for SFDAE to de-noise the remaining traces of

the glasses and slight lens reflections. The significant improvement is achieved with this

proposed scheme. The combination of NLCTV and SFDAE reduces the error rate by

approximately 50%, 52.25%, and 57.09% for PCA, LDA, and SRC respectively.
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Figure 6.14: Illustration of experiment setup for our cross-identity testing.
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Figure 6.15: Facial recognition with classification approaches PCA, LDA, and SRC. This

result proves that removing presence of glasses improves the facial recognition rate.
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Figure 6.16: ROC curves on thin glasses.
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Figure 6.17: ROC curves on thick glasses.
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6.2.2.3 Face Verification

The next experiment is based on the accuracy improvement on face verification. This is

different from facial recognition where a query face is compared to a set of gallery images

and choose the one with the highest matching score. Instead, face verification is a one-to-

one face matching on which the decision is made based on a threshold of the score.The

ROC curve is then generated on various thresholds. Choosing the best threshold is not a

simple task due to the trade off between the true and false acceptance rate. It is widely

accepted to only consider threshold with 0.1% False Acceptance Rate (FAR).

We first learned a transformation function with SFDAE model by using the same 98

training subjects images and evaluated it on 242 testing subjects (thin and thick glasses)

same as the previous experiment. However, the testing setup is now different due to face

verification’s one-to-one matching nature. Neutral face from each subject can be paired

with other 242 faces wearing glasses. This create a single correct pair and 241 false pairs

for each participant. In total, we have 242 true matches and 242 ∗ 241 = 58, 322 false

matches from each scenario.

The test was conducted on two scenarios: thin and thick glasses. For each scenario, we

classified the faces with PCA, LDA, and SRC. We compared the verification performance

between the original glasses-wearer faces, inpainted faces (NLCTV) and reconstructed

faces (NLCTV + SFDAE) images. The ROC curves are available in Figure 6.16 and 6.17.

The verification rate at 0.1% False Acceptance Rate (FAR) is summarized in Table 6.4.

As expected, the verification performance is significantly improved following the glasses

removal process. The improvements are especially distinct with PCA and LDA.

Table 6.4: Face verification rate at 0.1% False Acceptance Rate (FAR) before and after

glasses removal.

Classification
Thin Glasses Thick Glasses

Glasses NLCTV NLCTV + SFDAE Glasses NLCTV NLCTV + SFDAE

PCA 62.81 67.36 85.12 53.72 64.05 83.88

LDA 61.16 65.70 86.78 57.44 63.22 86.36

SRC 94.21 95.04 96.69 97.11 97.52 98.76

6.3 Summary

In this chapter, we proposed an automatic integrated glasses detection/landmarking and

removal system for improving facial classification performance. This framework consists
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of two major parts: glasses detection/landmarking and glasses removal. We proposed

glasses models as an alternative concept of pictorial-tree-structured face models by (Zhu

and Ramanan, 2012a). We proposed oval-shaped and rectangle-shaped glasses models

trained from 100 face with glasses images manually chosen from CMU multiPIE database

along with our own 39 landmarks ground truth. Furthermore, in order to improve its

robustness to distinguish between faces with glasses and non-glasses, we manually selected

536 cropped eye regions from non-glasses face images as negative samples. The landmarks

extracted via these models are used to localize glasses segments through masking process

for glasses removal phase. We integrated our proposed glasses models with two image

reconstruction techniques: NLCTV inpainting and SFDAE Deep Learning model as a

double-layered filter to remove the presence of glasses. The experiment results reveal the

high performance of our proposed glasses models on detecting the presence of glasses on

various face databases. Further experiments demonstrate positive impacts of removing

glasses towards both facial recognition and verification.
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Chapter 7

Face Retrieval based on Semantic

Features via Face Landmarking

As it is known that the works based on semantic representations are common on retrieving

documents (e.g text documents) (Mangold, 2007) or contents inside the images (Liu et al.,

2007). Face-related applications are not exceptional on this field (Karczmarek et al., 2015).

For instance, Wang et al. (2016) proposed an approach to classify Chinese ethnic groups

from facial semantic features. Another example is the software used by law enforcement

EvoFIT (Frowd et al., 2004) to identify criminal suspects by creating composite sketch

based on the descriptions by the crime witness. For the scenario of face images retrieval,

one of the classic approaches is conducted by Gudivada et al. (1993) by deriving facial

semantic attributes via Personal Construct Theory (PCT) (Kelly, 1955, 1969). However,

it needs a domain expert to do manual iterative selection of the semantic attributes.

Another approach is accomplished by Sridharan (2006). The author proposed a framework

to extract the features of facial components automatically (e.g probabilistic approach and

polygon fitting). However, the semantic information are quite simple such as the height

and width of the facial components. We want to include more sophisticated features such

as the geometrical shape of facial components as done by Conilione and Wang (2012).

Unfortunately, despite the complex semantic features, Conilione and Wang (2012) had to

manually created all the facial landmarks for all the face images which is time-consuming

for registering semantic membership degree and alignment.

These limitations motivate us to design a face images retrieval system which can perform

automatic facial landmarking which are sufficient to extract the semantic features. We

achieve this by utilizing our proposed AR model (Chapter 3). However, we modified our

AR model in this chapter as a component-based model while preserving the amount of

landmarks to perform more accurately for extracting better semantic features. In addition,

we also involve our proposed robust glasses model (Chapter 6) to detect the presence of

glasses on all the faces as one of the semantic features.

In order to obtain the semantic concepts of each face, we prepare some benchmark samples

to represent various semantic features of the face (e.g shape of the nose or mouth). All
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the faces will be mapped to each of these benchmarks by assigning ”membership degree”.

These memberships are used as features in the face image retrieval phase.

We conducted the experiments based on the success rate of finding the correct subject.

The result shows that our proposed automatic face images retrieval system can achieve

a significant result. We also discovered which semantic features contribute the most and

least for face images retrieval.

The structure of this chapter is as follows. Section 7.1 describe more details on the

preparation of face images dataset, the improved AR model, which semantic features we

use along with the proposed benchmarks and the whole framework of the system. Section

7.2 describes the performance evaluation of our proposed system. Section 7.3 summarizes

the contributions made on this chapter.

7.1 Framework

Our semantic-based face images retrieval system consists of three main stages. First, we

prepare our face images gallery set from AR database (Mart́ınez and Benavente, 1998).

All face images with strong illumination are normalized via Multi-scale Self Quotient

image (MSQ) technique (Wang et al., 2004). We then automatically extract all the facial

landmarks and glasses presence from all the face images on gallery set via the improved

version of our proposed AR model (Chapter 3) and glasses models (Chapter 6). Second,

the mapping of facial semantic is done to each face based on the chosen benchmarks. This

is done to assign the ”membership degree” of each semantic features to each semantic

benchmark (e.g narrow eyes, medium eyes, and widely-opened eyes). Lastly, the simulation

of semantic query with various scenarios for face images retrieval is conducted. The

framework can be seen in Figure 7.1.

7.1.1 Face Database

We chose 117 subjects from AR database (Mart́ınez and Benavente, 1998) as our face

image gallery set. Ten images for each subject were selected: two neutrals, two angers,

and six illuminated neutrals from both sessions. We still include angry facial expression

because our observation revealed that the facial components are not significantly different

from neutral expression compared to smile and scream expressions.
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Figure 7.1: The framework of our semantic-based face images retrieval. (1) We have 117

subjects with ten images each. Six of them contain various illumination which are nor-

malized through Multi-scale Self Quotient image (MSQ) approach. 130 facial landmarks

are then extracted from all the face images through our proposed component-based AR

model. Furthermore, glasses presence labels are also created by detecting it through our

proposed glasses model. (2) Geometric features (e.g eye distance and shape Triangular

Area Region (TAR) feature) are extracted based on the facial landmarks information.

All these features are mapped semantically to define their ”membership degree” to each

semantic benchmark sample. (3) These membership degree and glasses labels are then

used as features to perform face images retrieval.
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All six illuminated faces are normalized via the Multi-scale-Self-Quotient-image (MSQ)

approach by Wang et al. (2004) which is a part of implementation in INface toolbox by

Štruc and Pavešić (2009); Štruc and Pavešic (2011). Basically, the Self-Quotient Image

approach consists of two main stages: illumination estimation and illumination effect

substraction. Illumination is considered as the extrinsic factor and thus estimated to

produce a synthesized image with different albedo mapping. The illumination normalized

images are obtained by calculating the difference between the logarithms of original faces

and the corresponding synthesized images. The illumination normalization will remove

the color information since it is applied on grey-scale images. However, it is not a problem

to our proposed AR model since we have shown that the loss of color information does

not significantly affect the accuracy as long as the edge information is still clear (Chapter

3.3.4). The examples of the chosen faces and its normalized version are shown in Figure

7.2.

Figure 7.2: Samples of faces from AR database. All illuminated faces are normalized via

Multi-scale-Self-Quotient-image (MSQ) approach.

7.1.2 Facial Landmarks Extraction

All facial semantic concepts are extracted through geometric features obtained from facial

landmarks. Initially, we planned to retrieve facial landmarks via the previously proposed

automatic AR model (Chapter 3). However, despite the significant improvement on the

landmarks detection accuracy as shown in Section 3.3, the AR model is still restricted

on fixed set of various facial expressions in training (neutral, smile, angry, and scream

from AR database). For instance, a face with neutral expression is expected to have fully-

opened eyes while smiling faces have slightly-closed/narrow eyes. However, this scenario is

not necessarily always true as shown in Figure 7.3 (Top). It is possible that people have
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narrow eyes even on neutral expression. Similarly, it is also possible that people smile with

widely-opened eyes. We believe these restrictions cause a negative impact on the accuracy

of retrieved landmarks.

Therefore, we proposed an alternative way of training and using the AR model. We

trained the AR model as a component-based framework in this chapter. This idea

was inspired by the concept of component-based model CompASM by Le et al. (2012). We

conducted separate model training for left eye, right eye, and lower face regions as shown

in Figure 7.3 (Bottom). We use the subset of training dataset from AR model (Chapter

3.2) which is the first session of AR database. Only three facial expressions (neutral, smile,

and scream(open mouth)) are used to train lower face region. Furthermore, we manually

choose 50 face images (as suggested by Zhu and Ramanan (2012a)) for each eye category:

widely-open, slightly open/narrow, and closed eyes to train left and right eyes accordingly.

The amount of the landmarks are still preserved from the AR model (130 landmarks).

Since our observation revealed that eyes are not necessarily influenced by facial expression,

the process of facial landmarks extraction is conducted independently. We first extracted

facial landmarks on the lower face region (chin, nose, and mouth). Afterwards, we can

focus on the face upper region to localize landmarks on eyes and eyebrows.

We conducted an experiment to evaluate the accuracy improvement of our proposed

component-based AR model. We once again employed the standard procedures of e-

valuating facial landmarks used in 3.3.1 as mentioned by Çeliktutan et al. (2013). The

relative error and detection rate on 5%, 10%, and 20% Inter-Ocular Distance (IOD) were

measured on 17 fiducial landmarks from the m17 set. As a reminder, this set refers to

eyebrow corners (4 points), eyes corner and centres (6 points), nose tip and both sides (3

points), landmarks around mouth including the corners (4 points). This was conducted

on 2 database: AR (second session, neutral and smile) Mart́ınez and Benavente (1998)

and PUT Kasinski et al. (2008). The summary of the result can be observed in Table 7.1.

It has shown that our component-based AR model produces a lower error rate and higher

detection even on the lowest IOD.

Table 7.1: Facial landmarking performance improvement with component-based AR mod-

el.

AR database session 2 PUT database

AR model Component-based AR model Component-based

Relative Error 0.0362 0.0339 0.0625 0.0600

Detection 05% IOD 79.70 % 83.32 % 52.64 % 56.24 %

Detection 10% IOD 97.03 % 98.00 % 91.96 % 93.49 %

Detection 20% IOD 99.83 % 99.83 % 99.58 % 99.58 %
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Figure 7.3: (Top) Eyes shape/size are not necessarily affected by facial expressions. The

eyes might look narrow or wide open on any facial expression. (Bottom) Our proposed

component-based face models extended from AR model. Landmark fitting for both eyes

are not affected by the facial expression on the lower part of the face.

125



7.1.3 Semantic Features

We selected several semantic features extracted from the detected facial landmarks. We

avoid features which are too specific such as curvature of the lower eyelids or shape of

the nasal tip (Karczmarek et al., 2015) because these features are too sensitive and relies

heavily on the perfect accuracy of the landmarks. Since all the facial landmarks were

obtained automatically in our framework, a slight margin of error is to be expected.

Instead, we focused on broader description of the facial components (e.g whole nose or

mouth).

For each semantic feature, we chose a few image samples as the benchmark for registering

membership degree of every face to each semantic category. All the chosen benchmarks

were selected from some face images on CMU multiPIE (Gross et al., 2010) and CAS-

PEAL-R1 (Gao et al., 2008) database. The idea of having a few benchmark samples is

motivated by Ren et al. (NA) 1.

7.1.3.1 Glasses Presence/Existence

The presence of the glasses has been used as one of the semantic features for face retrieval

as conducted by Alattab and Kareem (2013) and Vaquero et al. (2009). On our face

retrieval system, we utilized the proposed tree-structured glasses models from Chapter

6 to distinguish between wearer and non-wearer of glasses automatically (Figure 7.4).

The detection rate for all 1170 face images are perfect. It is as consistent as the high

performance from Chapter 6.2.1. The assumption here is that the glasses presence is

consistent on the same subject (on both query and gallery set). Therefore, this feature

can be used to filter the gallery set on face images retrieval process for better accuracy.

7.1.3.2 Geometric Ratio

The next features are based on the ratio of the geometric information to describe the dis-

tance and size of the eyes (Figure 7.5). By utilizing the ratio, the features are independent

to the size of faces, thus makes it easier to compare on any face.

We defined three types of benchmark for eye distance: close, medium, and far. These

categories are based on the ratio between inner eye corners distance and the width of the

1This reference is still under review, so no publication date is available yet
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Figure 7.4: All face images are categorized based on the presence of glasses.

eyes (measured as horizontal distance of outer and inner eye corners). It is considered

’close’ if the mid-gap is smaller than the corresponding eye width, whereas the opposite

case is applied for ’far’ category. ’Medium’ is only for the face where the mid-gap can fit

another eye almost perfectly.

Similarly, we also defined three benchmarks for the size of each eye: narrow, medium,

and widely-opened. 12 landmarks were manually marked on each benchmark. The eye

size is measured based on the ratio between the height and width of the eye. The height is

calculated as the distance between high and low mid-points of the eye, whereas the width

is calculated as the distance between both eye corners.

7.1.3.3 Geometric Shape

The last set of semantic features are based on the 2-dimensional shape description of the

facial components. We adopted the same shape feature extraction approach used by Conil-

ione and Wang (2012) to compute Triangular Area Region (TAR) feature (El Rube et al.,

2005). TAR feature is considered as an efficient shape descriptor on both computational

cost and space/memory requirement. Furthermore, it is also invariant to various factors

such as translation, rotation, scale, affine transforms, noise and occlusions (Yang et al.,

2008).
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Figure 7.5: (Top) The distance between both inner eye corners. We selected three types

of benchmarks: close, medium, and far with respect to the width of the eye. (Bottom)

The size of the eyes calculated through the ratio between its height and width. We have

three types of eye size: narrow, medium, and widely-opened for both left and right eyes.
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Let L = (xi, yi), i = 1, 2, ..., N be a 2-dimensional object in an image (e.g eyebrow) which is

expressed via a set of N points forming a closed contour. Each point (xi, yi) is a Cartesian

coordinate of ith landmark obtained through the facial landmark detector. The shape

of the object are described as the collection of Triangular Area Region (TAR) between

3 equal-distant landmarks (xi−t, yi−t), (xi, yi), (xi+t, yi+t) on all N landmarks along the

contour where t is the length of the triangle (e.g t = 1 means 3 neighboring landmarks).

The formula for the triangle area is defined as:

TAR(i, t) =
1

2

∣∣∣∣∣∣∣∣
xi−t yi−t 1

xi yi 1

xi+t yi+t 1

∣∣∣∣∣∣∣∣
where the sign of the TAR depends on:

TAR(i, t) =


= 0 if straight line

< 0 if convex contours

> 0 if concave contours

The value of t ranges from 1 to b(N − 1)/2c due to the constraint by the periodicity of

the closed loop of L. The boundary condition t = N/2 is defined as:

TAR(i, t) =

0 if t = N
2 , N is even

undefined if t = N
2 , N is odd

We can regard the value of TAR for any t as an individual scale space function (Yang et al.,

2008). Therefore, by combining all the TAR value for t = [1, ..., (N − 1)/2], we define a

multi-scale space TAR feature to describe the shape of an object. In this experiment, we

selected a few facial components shape benchmarks. Each benchmark sample is manually

landmarked accordingly to extract its TAR feature. This is the only part of our system

where manual landmarking is still needed because these benchmarks act as the ground

truth for comparison. However the scale is much smaller compared to having to manually

create landmarks on all face images which can be prohibitively time consuming. All

the facial component shape benchmarks (with the corresponding TAR) we choose are as

follows:
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• 3 chin shapes (21 landmarks) (Figure 7.6).

• 4 eye (left and right) shapes (12 landmarks each) (Figure 7.7).

• 5 eyebrow (left and right) shapes (12 landmarks each) (Figure 7.8).

• 6 mouth shapes (20 landmarks) (Figure 7.9).

• 6 nose shapes (27 landmarks) (Figure 7.10).

Figure 7.6: Three chin shapes.
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Figure 7.7: Four right and left eye shapes.
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Figure 7.8: Five right and left eyebrow shapes.
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Figure 7.9: Six mouth shapes.
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Figure 7.10: Six nose shapes.
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7.1.4 Semantic Mapping

After we extracted facial landmarks out of all 1170 face images (117 people x 10 images

each), we compute all the geometric features as mentioned previously and compare them

systematically to calculate their ”membership” degree for each feature benchmark. The

magnitude of the membership degree depends on how close/similar the feature to each

benchmark. We consider two types of comparisons:

• Distance: This applies for eyes distance and size of eyes. The similarity is calculated

based on the absolute distance. For each semantic category (e.g right eye size),

the magnitudes are normalized into [0, 1] where 1 defines perfect resemblance (zero

distance) and 0 defines the furthest distance among all 1170 faces.

• Correlation: This applies for all multi-scales space TAR features on chin, eye, eye-

brow, mouth, and nose. The similarity is calculated based on the Pearson correla-

tion coefficient between TAR features (Fisher, 1958; Kendall and Stuart, 1979; Press

et al., 1992). Let A and B be the TAR features of a facial component from two face

images, then the correlation coefficient P (A,B) is calculated as:

P (A,B) =
1

N − 1

N∑
i=1

(
Ai − µA
σA

)(
Bi − µB
σB

)

where N is the dimension of TAR A or B (same length). µA and µB are the mean of

A and B respectively. σA and σB are the standard deviation of A and B respectively.

This formula can be simply written in terms of covariance of A and B as:

P (A,B) =
cov(A,B)

σAσB

For each semantic category (e.g chin shape), the magnitudes are normalized into

[0, 1] where 1 defines perfect similarity (correlation = 1.0) and 0 defines the worst

correlation (usually a negative number) among all 1170 faces.

In order to gain a better understanding intuitively, let us see some examples. For instance,

the benchmark for right eye size are Reye size benchmark = [0.2607, 0.3697, 0.4866] for

narrow, medium, and widely-opened. As a reminder, these values are calculated as the

ratio between the height and width of the right eye benchmark samples. Assuming we
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only have 3 face images with the right eye size value gallery Reye size = [0.28, 0.38, 0.45],

thus we calculate the distance matrix D as follows:

D =

 |0.2607− 0.28| |0.3697− 0.28| |0.4866− 0.28|
|0.2607− 0.38| |0.3697− 0.38| |0.4866− 0.38|
|0.2607− 0.45| |0.3697− 0.45| |0.4866− 0.45|



D =

 0.0193 0.0897 0.2066

0.1193 0.0103 0.1066

0.1893 0.0803 0.0366



on which D will be normalized D = D
max(max(D)) as such:

D =

 0.0934 0.4342 1.0000

0.5774 0.0499 0.5160

0.9163 0.3887 0.1772


However, since low distance means strong similarity, we reverse the value of D by sub-

stracting the value of 1 out of it as D = 1−D:

D =

 0.9066 0.5658 0

0.4226 0.9501 0.4840

0.0837 0.6113 0.8228


where each row represents the membership degree of each face to the three benchmark

(narrow, medium, and widely-opened) of the right eye size. The same concept can be

applied on TAR features. However, the distances are based on the correlation. Involving all

the membership degrees from all semantic features produces a vector of semantic features

for each face of size 42 (42 = 3 eye distance + 3 chin shapes + 10 eyebrow shapes (left

and right) + 6 eye sizes (left and right) + 8 eye shapes (left and right) + 6 mouth shapes

+ 6 nose shapes).

These membership degrees can be used to describe the semantic concepts of each face. In

this example, each face has a dominant value which represents strong similarity to one of

the benchmarks (e.g first face has narrow right eye, second face has medium right eye,
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and so on...). However, it is also possible for a face not having any significantly dominant

value. For instance, if the size of the eye is perfectly in the middle between narrow and

medium size, then it can be described with a fuzzy manner such as ”rather narrow”.

The advantage of this semantic mapping approach is that it is computationally efficient

and allows for easy semantic benchmarks expansion in the future since it does not require

large amount of samples per benchmark. For instance, we can easily add more types of

eye shapes with just one image sample each. Furthermore, it is also possible to add a

completely new semantic feature such as forehead size or shape.

7.2 Experiments

7.2.1 Experiment Setup and Performance Evaluation

As the main purpose of face images retrieval is to find the face(s) with the same identity

as the query image, we evaluate the performance of our face retrieval system based on the

success rate of finding the correct identity among the top k results. In our experiment,

we choose k = 5. We can not directly compare our approach to others numerically due

to various factors such as their facial landmarking by hand (manual) and difference on

semantic features.

We divided the face images from 117 subjects into two sets. The first set containing

50 subjects are evaluated in order to learn the best combination of semantic features

based on its success rate. We can observe which semantic features contribute more for

semantic-based face images retrieval. The learned combinations are then used to evaluate

the performance of the remaining 67 subjects. The semantic feature combinations are

learned through the greedy approach as used by Li et al. (2011). The basic idea is that

we initially evaluate the performance with a single semantic features (e.g mouth shape)

iteratively and record the average success rate. We then choose the one with the best

result and proceed to find the next best combination with two semantic features and so

on. This process is repeated until all semantic features are involved. The combination

with the highest success rate is chosen to perform face images retrieval on the second set

for the remaining 67 subjects.

Since each subject consists of 10 face images, we choose randomized n images as the

simulated semantic queries and the remaining (10− n) images as the gallery set. For our

experiment, we choose n = 1, 2, 3, 4, 5. It means that we have 5 experiments with 1, 2, 3,
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4 and 5 queries. We iteratively evaluate the performance 100 times for each n and each

semantic combination learning to obtain the average success rate. The classification is

conducted via the subspace projection technique LDA (Belhumeur et al., 1997) to learn

the projection matrix W from the gallery set. Furthermore, with the information of

glasses presence labels, we ensure the system to compare only with the subject with

the same state to filter some gallery images. Afterwards, The retrieval result shows the

top 5 closest distance to the query.

7.2.2 Experiment Results

We evaluate this experiment in two scenarios:

• For each subject, we compute the average of his/her gallery images (excluding query)

as the new semantic representation of that subject. It means that each person will

have only one representation in the gallery for calculating transformation matrix W

with LDA and perform top 5 face images retrieval with the query.

• For each subject, we also compute the average of his/her gallery images (excluding

query) as the new semantic representation of that subject. However, we still keep

the original gallery images along with its average to compute transformation matrix

W and perform top 5 face images retrieval. In this case, every subject will have an

additional representation in the gallery set. We make this setup more challenging by

providing more selection in the gallery while still retrieving only top 5 face images.

All the semantic features can be divided into ten categories. We assign each category with

a single number from 1 to 10 for easy identification as follows:



(01) Eye distance (02) Chin shape

(03) Left eyebrow shape (04) Left eye size

(05) Left eye shape (06) Mouth shape

(07) Nose shape (08) Right eyebrow shape

(09) Right eye size (10) Right eye shape


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7.2.2.1 Scenario 1

We first learn the optimal semantic combination of the first 50 subjects with various

number of queries. The result is summarized in Table 7.2 for n queries. As a reminder,

this means we choose randomized n face images per subject as query set and the remaining

(10−n) face images per subject as gallery set. In this experiment, we show the result when

n = 1, 2, 3, 4, 5. This table shows the success rate of the face images retrieval starting from

using only one semantic category up to ten categories. The order of the chosen semantic

categories depends on the highest success rate achieved for each combination. For instance,

Table 7.2 shows that nose shape (07) alone can achieve 48.90% success rate for 1 query

per subject. Afterwards, combining the nose shape (07) with eye distance (01) improves

the result into 62.54%. This step is repeated until all semantic categories are involved.

Overall result can achieve the highest success rate close to 80%.

Table 7.2: Result of learning semantic combination on the first 50 subjects based on the

success rate. These are evaluated with n = 1, 2, 3, 4, 5 queries.

Semantic Amount
1 Query 2 Queries 3 Queries 4 Queries 5 Queries

Rate Sem. Rate Sem. Rate Sem Rate Sem. Rate Sem.

1 48.90 07 48.08 07 48.65 07 47.75 07 46.97 07

2 62.54 01 62.61 01 61.91 01 61.35 01 60.76 01

3 71.48 06 70.64 06 69.96 06 68.89 06 67.44 06

4 77.62 08 75.96 08 74.74 08 73.12 08 71.76 08

5 76.96 04 77.06 09 76.46 09 74.53 09 72.70 09

6 79.64 10 77.95 10 76.87 10 75.44 04 74.06 04

7 79.66 09 78.69 04 77.76 04 76.75 10 75.01 03

8 78.52 03 79.13 03 77.66 03 76.78 03 75.29 10

9 78.82 05 78.26 05 76.74 05 76.04 05 74.33 05

10 74.26 02 73.68 02 72.63 02 71.23 02 69.74 02

Table 7.3: The retrieval success rate on the remaining 67 subjects.

Chosen Semantics 1 query 2 queries 3 queries 4 queries 5 queries

All except Chin Shape and Left Eye Shape 82.09 79.10 78.61 75.75 74.33

The result shows that not all semantic categories bring positive impact on face retrieval

result. All five cases (n = 1, 2, 3, 4, 5 queries) show that the involvement of shape of

chin and left eye shape (02 and 05) decrease the success rate. It is especially bad when

chin shape is involved. There is a possibility that the shape information on chin are not

sufficiently discriminative since they are quite similar to each other. Left eyebrow shape

(03) also occasionally decrease the performance, however it has much less impact. On the

other hand, the shape of nose, mouth and right eyebrow along with the distance between

eyes (07, 06, 08 and 01) are the features with the most contribution towards success rate.
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This result is consistent with the discovery by Conilione and Wang (2012) which states

that nose information contributes the most.

However, it seems peculiar that the left eyebrow shape (03) does not contribute as much

as right eyebrow shape (08). It is possible that the contribution of left eyebrow has been

overshadowed by the right eyebrow. Since it is high likely both eyebrows have similar

shape (although reversed horizontally), the semantic information of one of them is already

sufficient. Therefore, adding a similar feature will contribute less new information. A

similar pattern can also be observed from the shape of right eye (10) and left eye (05).

Once one of them (right eye) contributes to the retrieval result, the other eye (left eye)

contributes less. In this example, left eye shape even decreases the performance.

Based on the learnt combination from the previous 50 subjects, we perform another face

images retrieval on the remaining 67 subjects without involving the shape of chin and left

eye (02 and 05). Table 7.3 shows that the success rate can achieve significant result up to

82.09% success rate from the learned semantic combination. It can be seen that the result

is gradually decreasing as the amount of queries increases. This can be justified by the

fact that the amount of gallery images becomes less as the query increases per subject.

This implies that we get less and less information of each subject in the gallery set while

we get more variation of queries to be tested. However, even with 5 queries and 5 galleries

per subject, we still can achieve 74.33%.

The experiment results in Table 7.2 and 7.3 involves glasses filter when conducting face

images retrieval. We want to observe how the glasses presence filter help improving the

success rate. Table 7.4 shows the comparison between the non-involvement and involve-

ment of glasses filter. It can be seen the glasses filter significantly improves the success

rate approximately 10% to 13%.

Table 7.4: Success rate improvement before and after glasses filter.

Success Rate on the First 50 Subjects

1 query 2 queries 3 queries 4 queries 5 queries

No Glasses Filter 69.34 67.45 66.59 65.35 63.50

With Glasses Filter 79.66 79.13 77.76 76.78 75.29

Success Rate on the Remaining 67 Subjects

1 query 2 queries 3 queries 4 queries 5 queries

No Glasses Filter 71.64 67.91 66.17 63.43 61.49

With Glasses Filter 82.09 79.10 78.61 75.75 74.33
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7.2.2.2 Scenario 2

The result for semantic combination learning is summarized in Table 7.5. Once again,

this table follows the same format as previous scenario. We still can see similar pattern

such as the shape of nose. mouth and right eyebrow are some of the biggest contributors

toward the success rate. Furthermore, similar pattern of ”overshadowing phenomena”

between pairs of eyebrow shapes, eye shapes, and eye sizes still presents. For example,

on the case of 1 query, when left eyebrow shape (03) is involved beforehand, the right

eyebrow shape (08) contributes less improvement (from 6.32% to 4.40%). Similarly on

the case of 2 queries, the improvement by the right eyebrow (7.94%) has been reduced

after involving left eyebrow afterwards (drop to 3.54%). However, the difference is that

involving all semantic features does not significantly impair the retrieval result like in the

previous scenario.

Based on the result of Table 7.5, we decided to include all semantic features for face

retrieval on the remaining 67 subjects. Once again, the result in Table 7.6 shows significant

result by achieving 80.60% success rate for the highest result by involving all semantic

features.

Table 7.5: Result of learning semantic combination on the first 50 subjects based on the

success rate. These are evaluated with n = 1, 2, 3, 4, 5 queries.

Semantic Amount
1 Query 2 Queries 3 Queries 4 Queries 5 Queries

Rate Sem. Rate Sem. Rate Sem Rate Sem. Rate Sem.

1 52.70 07 50.23 07 49.35 07 47.45 07 46.16 07

2 56.44 06 55.75 01 53.79 01 52.87 01 51.22 01

3 64.02 03 62.72 06 62.49 06 61.53 06 59.41 06

4 70.34 08 70.66 08 69.53 08 67.55 08 65.91 08

5 74.74 01 74.20 03 72.81 03 71.21 03 69.39 03

6 77.22 09 76.10 09 74.87 09 72.74 09 70.65 09

7 79.36 02 77.39 10 75.70 02 73.94 02 71.79 10

8 80.26 10 78.05 02 76.47 10 75.60 10 73.18 04

9 79.86 05 78.27 05 77.11 04 75.56 04 73.30 02

10 79.88 04 78.73 04 77.84 05 75.45 05 73.40 05

Table 7.6: The retrieval success rate on the remaining 67 subjects.

Chosen Semantics 1 query 2 queries 3 queries 4 queries 5 queries

All 80.60 79.85 77.61 76.12 73.43
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7.3 Summary

In this chapter, we proposed an automatic face images retrieval based on the retrieved

facial landmarks from our proposed component-based AR model and previously proposed

glasses models. The whole framework begins from automatic facial landmarks extraction

(and glasses detection) followed by automatic semantic mapping to each face and concluded

with the query simulation. We begin with our first contribution on proposing component-

based AR model. This model has improvement in terms of landmarks accuracy and

detection rate. Furthermore, it is less affected by facial expressions. With this component-

based AR model, we can automatically extract geometric features from the landmarks

which will be mapped as semantic features. Our second contribution is the proposed

semantic mapping system and the benchmarks samples. This system can efficiently assign

semantic ”membership degree” of each geometric feature to each corresponding benchmark

samples. Furthermore, our proposed semantic mapping system allows for easy expansion

of new samples or completely new semantic features in the future. The third contribution

is the usage of glasses presence label detected with our previously proposed glasses model.

We utilize the information of glasses presence to filter the result of face images retrieval.

We assume that each subject always wears glasses (OR not wearing glasses) all the time

on both query and gallery set. This filter will eliminate some choices in the gallery set

which leads to higher success rate on finding the query subject.

Our experiment results reveal that our automatically-gained semantic features can be used

to achieve significantly high success rate on face retrieval. Furthermore, we also learn that

the eye distance and shape of nose, mouth, and eyebrows contributes the most on the

result. On the other hand, chin shape contributes the least due to its slight invariance.

142



Chapter 8

Conclusions and Future Directions

This thesis addresses the problem of improving the performances of automatic frontal

faces landmarking system with the application on semantic-based face images retrieval.

All the proposed approaches are the further developments of the pictorial-tree-structure

face models by Zhu and Ramanan (2012a) described in Chapter 2. Our main contribu-

tions reside in the context of accuracy, resolution range, and efficiency via preceding face

detection. In addition, an alternative usage of the model was proposed for robust glasses

detection/landmarking which can be used to define another facial semantic feature. Lastly,

we integrate both facial and glasses landmarks detector to propose an efficient automatic

semantic-based face images retrieval framework.

We begin our research with a contribution via developing a face model with higher accuracy

and amount of landmarks in Chapter 3. We achieved this by employing a new facial

structure with a high density of facial landmarks inspired by Milborrow and Nicolls (2008).

This notion leads to a higher accuracy due to a better landmarks fitting, thus potentially

providing better semantic facial features. We refer this proposed model as the AR model

since it is trained on frontal faces (four different expressions) from AR database. AR model

contains close to double amount of landmarks compared to face models proposed by Zhu

and Ramanan (2012a). We conduct performance evaluations with a few state-of-the-

art approaches based on the relative error and detection rate of the landmarks and the

accuracy of the geometric descriptions derived from them. The experiment results reveal

a significant overall improvement by our proposed AR model. Lastly, we investigated

the effects of various colour spaces on AR model. Due to the slight accuracy change, we

concluded that there is no major impact from the colour information as long as the edge

information is clear.

We then develop the proposed face models further to cover various face resolutions in

Chapter 4. As AR model is trained on large faces, it can only fit the landmarks well on

high resolution faces. We proposed to extend AR model via training the face models on

Multi Resolutions (MR) models to cover low resolution faces. We decided to train MR

models on other four scales: 210x210, 150x150, 90x90, and 30x30. As the initial landmarks

are too dense for low resolution faces, we designed an automatic adaptive landmarking
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framework to preserve important landmarks depending on the size of training faces. We

evaluated the performance of MR models on PUT database. We first compare it with

Share-146 model by Zhu and Ramanan. Our MR models outperform Share-146 by a

significant margin and are able to detect faces as small as 30x30 on which Share-146 would

fail. We then compare with two other state-of-the-art approaches: Intraface (Xiong and

De la Torre, 2013) and STASM (Milborrow and Nicolls, 2014). The experiment results

reveal that MR is comparable on large faces, but slightly less accurate on small faces.

However, additional experiment shows that our proposed MR models are more robust and

stable against landmarks misalignment in the presence of hair and beard. Furthermore,

MR models are less sensitive to false face detection since it can detect the face itself.

We then divert our attention to face images taken in uncontrolled environment in Chapter

5. We propose a novel face detection model called the Tree-structured Filter Model

(TFM). The main purpose of TFM is to filter false face detections from the Viola Jones

face detector (Viola and Jones, 2004) while preserving high rate of correct detections. TFM

is trained on low resolution faces with restricted landmarks and expressions just sufficient

to depict intuitive description of frontal human faces, thus making it highly efficient. We

also design a complete facial landmarking system by integrating Viola Jones face detector,

TFM, and MR models for images taken in uncontrolled system. The experiments are

conducted on two uncontrolled databases with the focus on frontal/near-frontal faces.

The first experiment demonstrates a significant performance of TFM on maintaining high

correct face detections with the lowest false detections. The second experiment shows the

advantages of our proposed facial landmarking system compared to other algorithms in

terms of detection rate and processing time.

As glasses can be considered as a part of a human face, we extend our landmarking tech-

nique into detecting glasses landmarks in Chapter 6. We have two main contributions

made in this chapter. The first contribution is the proposed robust glasses model which

is able to detect and extract 39 glasses landmarks. This tree-structured model is trained

from 100 manually selected glasses images from CMU multiPIE database (Gross et al.,

2010). We systematically provide 39 glasses landmarks for each training image to ensure

high consistency and accuracy. This model is tested on various databases and proven to

be remarkably robust on detecting glasses presence along with its landmarks. The second

contribution is the proposed automatic integrated glasses removal system to improve face

classification performance. We employ two image reconstruction approaches NLCTV in-

painting (Duan et al., 2015) and SFDAE Deep Learning model (Pathirage et al., 2015) as

a hierarchical double-layered filter to remove the presence of glasses based on the location

information extracted by our proposed glasses model. The experiment results demonstrate

the robust improvement on both face recognition and verification.
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To conclude the thesis, we design an automatic semantic-based face images re-

trieval system based on the landmarks extracted from our proposed component-based

AR model and previously proposed glasses model in Chapter 7. Our first contribution

is the component-based AR model. We divided AR model into 3 tree-structured models

to reduce the effect of facial expressions on eye regions. The experiment results demon-

strate improvement in terms of landmarks accuracy and detection rate compared to the

original AR model. Our second contribution is the proposed semantic mapping system

and benchmark samples. Semantic ”membership degree” can be efficiently mapped for

each geometric feature to the corresponding benchmark samples. This system also allows

for easy expansion of benchmark samples by providing additional samples or even entirely

new semantic features in the future. Our last contribution is the utilization of glasses pres-

ence information detected by our glasses model to filter the result of face images retrieval.

With the assumption that any face subject always wears glasses (or vice versa) all the

time on both query and gallery set, the filter is able to eliminate some negative options

in the gallery set. The experiments show the huge advantage of utilizing glasses filter

on improving the success rate. Lastly, the results also prove that the semantic features

extracted automatically from our proposed component-based AR model can be used to

achieve significant success rate in face images retrieval.

8.1 Future Study

Despite all the significant performances achieved by all of our proposed approaches, we

still have the following possible problems to solve in near future.

• Our face landmarking models are still restricted to frontal faces due to our focus on

semantic-based face images retrieval. We believe the concept of high-density face

models, adaptive landmarks, and light-weight face filters could be applied to train

faces with various angles/poses.

• We believe that the components-based AR model proposed in Chapter 7 is more

efficient and robust for facial landmarking, but it deserves further investigations on

various types of tree structure.

• For the case of multi-resolutions facial landmarking, we can consider to involve image

enhancement techniques to improve the detail of facial features (e.g edge information)

for better facial landmarks detection.
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• We can expand our proposed semantic-based face images retrieval to involve more

facial databases. Furthermore, we also can consider the uncontrolled environment

scenario by integrating it with our proposed MR models and TFM. Lastly, further

investigation is needed to explore more complex types of facial semantic features

such as skin color information.

• Lastly, our proposed approaches are still far from real-time system due to large

processing involved in landmarks fitting. Even though we have improved the effi-

ciency through our proposed TFM and fixed-size scaling, there are still rooms for

improvement. For instance, we can reduce the features domain by restricting the

features pyramid just on the similar scale levels of the original image after the faces

are detected by Viola Jones detector and TFM. Therefore, we can avoid excessive

computation since early face detection informs us on approximate size of the face.

Furthermore, the concept of part sharing (Torralba et al., 2007) adopted in Zhu

and Ramanan’s face models can also be applied on our proposed approach. Time

complexity analysis conducted by Zhu and Ramanan (2012a) reveals that the com-

putational cost of pictorial-tree-structured model is affected by four factors: Amount

of landmarks on each model L, amount of trained models M , feature dimension D

and candidate part locations N which bring to performing complete landmarks fit-

ting on the whole image as O(DNML). By conducting comprehensive part sharing,

we are able to decrease the number of unique landmark templates which effectively

reduce M significantly for computing efficiency.
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