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Abstract 

Envelope analysis is a widely used method for rolling element bearing fault detection. To 

obtain high detection accuracy, it is critical to determine an optimal frequency narrowband for 

the envelope demodulation. However, many of the schemes which are used for the 

narrowband selection, such as the Kurtogram, can produce poor detection results because they 

are sensitive to random noise and aperiodic impulses which normally occur in practical 

applications. To achieve the purposes of denoising and frequency band optimisation, this 

paper proposes a novel modulation signal bispectrum (MSB) based robust detector for 

bearing fault detection. Because of its inherent noise suppression capability, the MSB allows 

effective suppression of both stationary random noise and discrete aperiodic noise. The high 

magnitude features that result from the use of the MSB also enhance the modulation effects of 

a bearing fault and can be used to provide optimal frequency bands for fault detection. The 

Kurtogram is generally accepted as a powerful means of selecting the most appropriate 

frequency band for envelope analysis, and as such it has been used as the benchmark 

comparator for performance evaluation in this paper. Both simulated and experimental data 

analysis results show that the proposed method produces more accurate and robust detection 
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results than Kurtogram based approaches for common bearing faults under a range of 

representative scenarios. 

Keywords: Modulation signal bispectrum; bearing fault detection; envelope analysis; 

Kurtogram; condition monitoring. 

1. Introduction 

Bearings are at the heart of almost every rotating machine, and they have received a 

lot of attention in the field of vibration analysis because they are a common source of 

machine faults [1][2]. For accurate diagnosis of a bearing fault, a number of techniques have 

been proposed in recent years to detect and identify specific bearing fault features (bearing 

frequencies) from within monitored data. Darlow explored the use of a high frequency 

resonance technique, widely known as envelope analysis [3]. Antoni applied cyclostationary 

spectral analysis [4][5], and cepstrum analysis, bispectrum analysis and time-frequency 

analysis have also been used. Ho and Randall investigated the application of self-adaptive 

noise cancellation in conjunction with envelope analysis to remove discrete frequencies 

masked within bearing vibration signals [6]. Barszcz applied the same approach to denoise 

wind turbine vibration signals for bearing outer race fault diagnosis [7]. Sawalhi, Randall and 

Endo presented an algorithm for enhancing the surveillance capability of spectral kurtosis by 

using the minimum entropy deconvolution technique. This technique deconvolves the 

influence of the transmission path and clarifies the impulses, even when they are not 

separated in the original signal [8]. Zhao applied empirical mode decomposition and the 

approximate entropy method for severity assessment of a spall-like fault in a rolling element 
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bearing [9]. A recent significant advance in envelope based rolling element bearing fault 

detection has been the Kurtogram [10] and this has received considerable attention in recent 

months [11][13]. For this reason, the Kurtogram has been used as the benchmark comparator 

in this study.  

The researchers above, and more, have achieved considerable progress in improving 

the accuracy of bearing fault detection and diagnosis. Most of the fault detection schemes 

presented in the literature are based on tracking the amplitude of the characteristic fault 

frequency but with little attention given to the utilisation of modulation characteristics and 

noise suppressing which are inherent in measured signals. Recently, Rehab et al explored 

using the MSB to extract fault features from the envelope signal, exploiting its noise 

suppression capabilities, and in doing so showed more reliable bearing fault severity 

assessment compared to power spectrum approach [14]. This approach, however, still 

requires optimisation of the filter’s parameters for envelope analysis. In this paper a more 

straightforward and robust MSB detector is proposed, which does not rely on envelope 

analysis, and which is shown to provide reliable detection features based only on the 

demodulation and noise suppression characteristics of the MSB. 

Section 2 develops the detector and outlines the theoretical basis for bearing fault 

diagnosis. Section 3 presents performance studies based on simulated signals, and Section 4 

validates the practical application of the detector via two application case studies.  

2. The modulation signal based detector 

2.1 A bearing vibration signal model 
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The vibration signature of a rolling element bearing with local defects can be typified by an 

amplitude modulation process. For a rolling bearing with a local defect of fault characteristic 

frequency 1/F 0f T , its vibration acceleration response containing 2 1M   impulses can be 

modelled according to [15][16][17], as follows: 

( )
( ) ( ) cos( )u( )i

M
t

m i r i i

m M

x t A t e t t n(t)
 



       (1) 

where mA  is the amplitude of the m th fault impulse which includes cage and load 

modulation, M is the number of impulses, u( )t is a unit step function, 0T  is the time period 

corresponding to the fault characteristic frequency,   is the structural damping characteristic, 

r  is the excited resonance frequency, ( )n t  is typical noise which includes both stationary 

Gaussian noise and aperiodic impulses as would inevitably be encountered in any real 

measurement environment, and where 0( )
ms

i ii M
t t mT 


    in which i  represents the 

effect of random slippage of the rollers as the ith realisation of a zero mean uniformly 

distributed random variable, with standard deviation within a range <0.02 0T . 

This represents the fault signature of a local bearing defect comprising not only periodic 

components but also nonlinear modulation effects between fault frequencies, structural 

resonances and load distribution. Moreover, the signal is contaminated by noise and 

interference, and this is especially relevant when the fault signature is weak during the early 

stages of fault development. On this basis, to extract fault signatures effectively, the signal 

must be both denoised and demodulated. 
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Fig. 1 Simulated fault data and spectra of a rolling element bearing with a localised defect on 

the (a) outer race, (b) inner race (c) rolling element, and (d) cage  

As the effect of random slippage is relatively small, the deterministic part of ( )x t  in Eq. (1) 

represents predominately a series of impulse responses to local bearing defects such as a 

small dent on deferent components of a bearing, with a repetition frequency which reflects the 

contact of the bearing fault with another part of the bearing (e.g. an area of fatigue damage on 

a raceway and the periodic interaction of the rolling elements with this), this is called the 

defect frequency of the bearing. For a typical rolling element bearing there are four possible 

characteristic defect frequencies and these are determined by the bearing dimensions, the 

shaft speed and the defect location, in addition to an installation-dependent feature called the 

contact angle [18]. The repetition frequency for an outer race defect is denoted of , that for an 

inner race defect is if , for a rolling element defect is bf  and for a cage defect is cf . The 
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repetition frequency can be modulated by loaded zone effects on rotating elements, as shown 

in Fig. 1. For an inner race defect, the modulating frequency is the shaft rotational frequency 

rf , but for a rolling element defect it is the ball spin frequency bsf  (where / 2bs bf f ). The 

theoretical characteristic frequencies of a rolling element bearing can be calculated with Eqs. 

(2)-(5) [18].  

Contact Angle φ 

Ball Diameter

Pitch

 Diameter

 

Fig. 2 Contact angle of rolling element bearing 

Outer race fault frequency (aka the Ball Pass Frequency for a Fault on the Outer Race 

- BPFO):  

(1 cos )
2

br
o r

c

DN
f f

D
          (2) 

Inner race fault frequency (aka the Ball Pass Frequency for a Fault on the Inner Race 

- BPFI): 

(1 cos )
2

br
i r

c

DN
f f

D
          (3) 

Ball fault frequency (aka the Ball Spin Frequency - BSF): 
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f f
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Cage fault frequency (aka the fundamental train frequency - FTF): 

1
(1 cos )

2

b
cage c

c

D
f f

D
          (5) 

where cD  is the pitch circle diameter, bD  is the roller diameter,   is the contact angle as 

shown in Fig. 2, and rN  is number of balls (or rollers).  

2.2 The modulation signal bispectrum 

To analyse the modulated signals, consideration of the sidebands in the bispectrum 

was introduced in [19]. The authors [20][22] have found that this approach allows an accurate 

quantification of modulating components in diagnosing different types of mechanical and 

electrical faults in machines and is particularly useful in extracting weak fault signatures in 

motor current signals. In the frequency domain, the modulation signal bispectrum (MSB) of a 

signal )(tx , expressed in the form of the discrete Fourier transform )( fX , can be defined as: 

* *( , ) ( ) ( ) ( ) ( )MS c x c x c x c cB f f E X f f X f f X f X f       (6) 

where ( , )MS c xB f f  is the bispectrum of signal )(tx , E is the expectation operator, xf  is 

modulating frequency, cf  is the carrier frequency and  c xf f  and  c xf f  are the 

higher and lower sideband frequencies respectively. This expression takes into account both 

 c xf f  and  c xf f  simultaneously and hence it is of particular interest to this study, 

which aims to explore sideband features in the MSB. It enables qualification of modulation 
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effects via the bispectral peak at bifrequency ( , )MS c xB f f . In addition, if random noise 

components are not coupled but have random distributions, the magnitude of the MSB will be 

close to zero. In this way, the MSB allows wideband noise and aperiodic components in 

bearing vibration signals to be suppressed effectively so that the discrete components relating 

to modulation effects can be revealed more clearly.  

To quantify more accurately the sideband amplitudes, the MSB can be modified by 

removing the substantial influence of carrier frequency ( cf ) components via a magnitude 

normalisation. To differentiate this improvement from the normal MSB, the MSB sideband 

estimator has been abbreviated to MSB-SE [21], defined as follows: 

 
 

 

,
,

,0

MS c xSE
MS c x

MS c

B f f
B f f

B f
        (7) 

where  ,0MS cB f is the squared power spectrum estimation at 0xf   and is equal to 
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cX f . This is an important property that can be used as the basis for calculation of 

individual sideband amplitudes [21]. 

2.3 An MSB-based robust detector 

Fig. 3 shows a typical MSB result from a measured signal. It is clearly evident that 

the optimal frequency band for detecting a bearing fault is at a specific value of cf  referred to 

as best
cf , and this band results in a maximum SE

MSB  peak. In this instance, a single value of cf , 

best
cf  gives the most significant result, but it will be shown later that more than one value of 

cf  may give significance peaks at the bearing defect frequency (and its harmonics) labelled 
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‘*’ in Fig. 3. Based on this approach, fault detection can be implemented directly, avoiding 

the preliminary processing steps associated with selection of the optimal frequency band 

during conventional envelope calculation [14][17]. In conjunction with the MSB’s noise and 

impulse interference suppression capabilities this results in a significantly more robust 

detection method. 

of

2 of

 

Fig. 3 MSB showing detector ( )xB f  formed from slices shown along ( )cB f  

To achieve even more robust results, the detector can be further improved based on 

an average of several suboptimal MSB slices such as those with ‘↓’ markers in Fig. 3, and it is 

this final adaptation that results in what this paper refers to as ‘the robust MSB detector’: 

 1

1
( ) , 0SE kK

kx MS c x xB f B f f f
K

        (8) 

where K is the total number of selected cf  suboptimal slices (3, in the case of Fig. 3), the 

number of which depends on the significance of the peaks themselves. From Fig. 3, it is clear 

that peaks appear at the fault frequency and its first harmonic in the MSB detector ( )xB f  of 

the simulated signal. The detector is calculated based on several cf  slices, and hence it 

combines the information of multiple carrier frequencies. In this way, it utilises more 
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wideband characteristics of the impulsive excitations due to a bearing defect, which ensures 

that the results are more robust because of its increased suppression of strong interferences 

that can exist in any individual cf  slice.  

Vibration signal

Calculate the MSB using Eq. (6), ie

Calculate the MSB-sideband estimator 

                    using Eq. (7), ie

Calculate the compound MSB slice

            using Eq. (9), ie

Calculate the robust MSB detector using Eq. (8), ie

* *( , ) ( ) ( ) ( ) ( )MS c x c x c x c cB f f E X f f X f f X f X f  
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Fig. 4 Flow chart of the robust MSB detector calculation 

In order to obtain suboptimal cf  slices, the suboptimal sideband estimator 

 ,SE k
MS c xB f f  can be determined from the compound MSB slice ( )cB f , calculated by 

averaging the significant MSB peaks in the direction of the xf increment:  
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      (9) 

where f  is the frequency resolution in the xf  direction. 

In summary then, the robust MSB detector can be implemented using four primary 

steps shown in Fig. 4: 

3. Simulation study 

To evaluate the performance of the MSB detector, both no-slippage and slippage signals were 

produced using a linearised bearing model derived from the nonlinear model presented in [23], 

and this was validated with different bearing fault cases and different internal clearances. 

Specifically, it represents three typical resonances in high frequency bands corresponding to 

the inner race, outer race and seat/sensor, allowing the evaluation to be carried out for 

different resonant regions. Based on a fundamental period 0 1/ 1/ 89oT f  , corresponding 

to an outer race defect with BPFO=89Hz, a pulse train with no bearing slippage was 

generated with a fixed time period defined by 0it t mT  , whereas an equivalent pulse series 

with bearing slippage was produced with a random time period by using 

0( )
m

i ii M
t t mT 


    in which the standard deviation of the time variation was set to 

either a smaller deviation 1 00.01T   (ie 1%) or a larger deviation 2 00.02T   (ie 2%), to 

enable the investigation of the influences of bearing slippage at two different levels of 

occurrence. The pulse series were then used as the input to the model and the output velocity 

response at the bearing seat was differentiated to obtain the corresponding acceleration signal. 

This way of signal generation is efficient and also maintains the underlying bearing dynamics; 
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in comparison it would take a relatively long time to find a numerical solution to a nonlinear 

model.  

Both the no-slippage signals and slippage signals had different levels of extraneous white 

noise and aperiodic impulsive interferences added to them, creating in total six evaluation 

scenarios as detailed in Table 1 and denoted A through F; collectively these allowed a range 

of representative detection circumstances to be assessed.  

Table 1. Description of the six evaluation scenarios, denoted A - F 

Scenario White noise 
Aperiodic 

interference 

SNR1 

value 

SNR2 

value 

A - Low noise  Level 1 Low -14.7dB -27.9dB* 

B - High noise Level 2 Low -29.7dB -42.9dB* 

C - Low noise 

with medium 

level impact 

interferences 

Level 1 Medium -14.7dB -38.9dB** 

D - High noise 

with high level 

impact 

interferences 

Level 2 High -29.7dB -53.9dB** 

E - 2% random 

slippage with low 

noise 

Level 1 Low -14.7dB -28.3dB* 

F - 2% random 

slippage with high 

noise 

Level 2 Low -22.0dB -35.7dB* 

* SNR2 is calculated from the white noise signal only. 
**   SNR2 is calculated from both the white noise and the impulsive interference. 
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To quantify the added noise influences, two means of calculating signal to noise ratio (SNR) 

were used, one for gauging the power of the stationary noise (referred to as SNR1) and 

another for gauging the local peaks of the aperiodic impulsive noise cases (referred to as 

SNR2). For the stationary case, SNR1 is defined as: 

 101 10log /s nSNR P P        (10) 

where sP  and nP  indicate the RMS values of the signal and noise respectively. And for the 

aperiodic impulsive interference case, SNR2 is defined as: 

 102 20log /s nSNR P A        (11) 

where nA  represents the peak values of the noise or the impulsive interferences. As shown in 

Table 1, in addition to having SNR1 values, the two random noise-only cases (A and B) also 

have SNR2 values because the random white noise includes localised spikes of magnitudes 

several times its RMS value. Nevertheless, these signals are considered as being of low level 

aperiodic impulsive interference compared to cases C and D where impulsive interferences 

have deliberately been added. The two white noise cases A and B represent any stationary 

noise influences from the measurement system, machine operation etc.  

It can be seen that the addition of aperiodic impulsive interferences to the white noise cases in 

A and B result in considerably lower SNR2 values for cases C and D. These two cases allow 

the study of situations where the signals are contaminated with nonstationary (aperiodic)  

influences which can arise from electromagnetic effects, looseness, backlash, cavitation etc. 

Having determined the characteristics of the MSB detector when applied to the noise 

contaminated no-slippage signals (A – D), slippage signals (E and F) with a high levels of 

non-stationarity (or randomness) of 2% were then explored, incorporating two different white 
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noise levels; this enabled the accurate assessment of the influence of bearing slippage on the 

robustness of detection. It is worth noting that although data was simulated for a range of 

random slippage variations (0.5%, 1%, 2%), only the most severe of these circumstances (2% 

slippage) was used in the performance evaluation. 

The study evaluated if the detector could find bearing fault signatures within the noisy signals 

and thereafter benchmarked the results with those from the typical fast Kurtogram approach.  

3.1 Robustness to white noise  

Each simulated signal consisted of 285,715 data points with a sampling rate of 71.5kHz, 

giving 355 pulses within a time period of 4 seconds. Fig. 5 shows the representative time 

series and corresponding spectral representations for three different simulated outer race fault 

signals (note the different amplitude scales for the three time traces). Fig. 5(a) shows the 

waveform of the simulated rolling element bearing fault signal without any noise. It 

comprises three primary frequency response regions associated with three resonance 

frequencies at 3,471Hz, 7,120Hz, and 11,750Hz. Although this is simulated data, these 3 

frequencies were chosen because they are representative of those associated with the 

dominant vibration modes of the inner race, outer race and sensor, in a typical rolling element 

bearing condition monitoring setup [24]. Fig. 5(b) illustrates the time waveform and the 

spectrum for the low noise signal with low impulsive interference (Case A). Fig. 5(c) presents 

the equivalent for the high noise signal again with interference (Case B). The SNR, in both 

cases, was calculated using Eq. (10). From Fig. 5(b) and (c), it can be seen that for the low 

noise case, the frequency components around the lowest resonance frequency (3,471Hz) are 

masked by the noise. For the high noise case, the first two resonance frequencies are 
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themselves completely buried in the noise. It is therefore difficult, in these circumstances, to 

locate resonance frequencies and hence to implement accurate fault detection if a 

conventional envelope approach is used. As shown in Fig. 6, the envelope spectrum is unable 

to reveal the fault components for the high noise case when it uses a band pass filter with a 

centre frequency of 11,750Hz and a bandwidth of 500Hz (which covers the first 3 harmonics 

of the inner race fault frequency which is the highest frequency of possible bearing faults).  

 

Fig. 5 Time waveforms of the simulated signals and their spectra with different levels of 

white noise: (a) noise free; (b) low level of white noise; and (c) high level of white noise 
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Taking the low noise scenario (Case A) as an example to describe the process of calculating 

the MSB robust detector, the steps are as follows. Firstly, calculate the MSB (the FFT size is 

32,768 and the average time is 83) and also calculate the sideband estimator using Eqs. (6) 

and (7). Then, calculate the compound MSB slice ( )cB f  to choose the suboptimal cf  slices 

and hence to achieve the result displayed in Fig. 7(a). The cf  slices marked by ‘*’ at around 

7,000Hz and 12,000Hz have in this case been selected for the calculation of the MSB detector. 

Subsequently, the robust detector is calculated using Eq. (8), as shown in Fig. 7(c). As a 

benchmark, the fast Kurtogram algorithm [25] has also been applied to optimise the filter 

parameters for a narrowband envelope analysis, as shown Fig. 7(b). The envelope spectrum 

obtained by the Kurtogram is referred to as the Kurtogram-based detector in this paper. The 

Kurtogram optimised filter centre is at 11,719Hz and the filter bandwidth is 372.02Hz. Both 

the MSB and Kurtogram-based approaches find the highest resonance frequency at around 

11,719Hz as the optimal band, and this was confirmed by multiple simulation runs.  

 

Fig. 6 Detection by conventional envelope spectra 

Fig. 7(c) shows the normalised results of the MSB detector and the Kurtogram-based detector 

for the low noise signal with low impulses and no slippage (Case A). It can be seen that both 
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detectors have distinctive peaks at the outer race fault characteristic frequency and its 

harmonics, indicating that they are capable of detecting the bearing fault for this low noise 

case. It is worth noting, however, that the MSB-based detector has lower background noise 

than that based upon the Kurtogram (which shows more harmonics along with noise). 

 

Fig. 7 Results of the MSB robust detector and the Kurtogram-based detector (low noise, low 

impulsive interference and no slippage, Case A): (a) the compound MSB slice ( )cB f ; (b) 

Kurtogram; (c) MSB robust detector; and (d) Kurtogram based detector  

For the high noise, low impulses, no slippage scenario (Case B), the compound MSB slice 

( )cB f  and the normalised results of the two detectors are shown in Fig. 8. It can be seen from 

Fig. 8(a) that there are several significant peaks at around 11,719Hz, which is the highest 
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resonance frequency of the simulated signal. In contrast, the central frequency optimised by 

the Kurtogram is at 26,768Hz and the bandwidth is 17,857Hz, which is not the location of the 

resonance frequency and bandwidth is too wide.  

In summary, the MSB detector can still extract the fault feature frequency even if the noise is 

very high, whereas the Kurtogram approach does not give any indication of the fault. This 

greater capability of the MSB detector is attributed to its high performance noise suppression. 

 

Fig. 8 Results of the MSB robust detector and the Kurtogram based detector (high 

noise, low impulsive interferences impulses and no slippage, Case B): (a) the compound MSB 

slice ( )cB f ; (b) Kurtogram; (c) MSB robust detector; and (d) Kurtogram based detector  

3.2 Robustness to aperiodic impulsive interference in the presence of white noise 
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To assess the performance of the proposed approach in the presence of aperiodic impulsive 

interference, two simulated fault signals were produced by adding 20 randomly occurring 

impulses with random amplitudes to the previous two noisy no-slippage signals in Case A and 

Case B, thus creating cases C and D. Although the same impulse features were added to cases 

A and B, the resulting two cases inevitably have different SNRs because of the differences in 

the random noise levels of A and B. Case C is hence defined as ‘low noise with medium level 

impact interferences’ and Case D is defined as ‘high noise with high level impact 

interferences’. Neither Case C nor Case D contains any slippage features. 

 
Fig. 9 Signal waveform and spectra with two levels of aperiodic impulses and white noise 

(cases C and D): (a) low level of aperiodic impulses; and (b) high level of aperiodic impulses 

Fig. 9 shows the time waveforms of these simulated signals and their spectra (again, note the 

different amplitude scales for the two sets of time data). The SNR1 values are the same as 

those for Fig. 5, however the SNR2 values calculated using Eq. (11) are much lower than 

those for the stationary noises cases due to the higher localised peaks of the impulses. The 
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resulting spectra show little difference, revealing that that the modulations of the periodic 

content are still sufficiently significant around the high frequency resonance at 11,719Hz. 

 

Fig. 10 Results of the MSB robust detector and the Kurtogram-based detector (low 

noise, medium impulsive interference and no slippage, Case C): (a) the compound MSB slice 

( )cB f ; (b) Kurtogram; (c) MSB robust detector; and (d) Kurtogram based detector 

Using the same calculation parameters, the MSB and Kurtogram detection results were 

obtained as shown in Fig. 10 and Fig. 11, for Case C and Case D respectively. These figures 

reveal that the MSB detector is still able to detect the presence of the fault for both Case C 

and Case D, but because of the influence of local interferences the Kurtogram-based detector 



21 

cannot find the correct frequency bands and is unable to provide a correct detection, even for 

the less severe medium level interference of Case C.   

 

Fig. 11 Results of the MSB robust detector and the Kurtogram-based detector (high 

noise high impulsive interferences, and no slippage, Case D): (a) the compound MSB slice 

( )cB f ; (b) Kurtogram; (c) MSB robust detector; and (d) Kurtogram based detector 

3.3 Robustness to random roller slippage 

To evaluate the influences of rolling element slippage, which occurs randomly in many 

bearing applications, on the robustness of detection provided by the two methods, two further 

evaluation signals were produced with differing degrees of slippage, as described at the 

beginning of Section 3.  
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Fig. 12 shows the time randomness of 386 fault feature pulses relative to the base period, with 

0 1/ 89 0.112T   (s), and for differing degrees of slippage (0%, 0.5% and 2%). Clearly, with 

more slippage induced, the deviation from the base period is more significant and 

consequently the vibration responses contain more random content and less the periodic 

content. However, as shown in Fig. 12(b), the time domain responses still exhibit clear 

periodic profiles with respect to the base period for the two slippages cases (0.5% and 2%) 

although the individual transient processes show observable time shifts from their 

corresponding baselines. These shifts make the responses in the three resonance bands much 

smaller and the periodic spectral components significantly smeared. As shown in the 

magnified spectra of Fig. 12(c), the smearing effects become more serious with increasing 

slippage and also in the higher frequency resonance bands (because of the multiplying effect 

of harmonic order). Nevertheless, the responses at the resonances are still significant, showing 

that periodic content remains and hence provides a basis for bearing fault detection. The 

random slippage can be considered as an additional form of noise which needs to be 

suppressed by the detection method to achieve reliable detection results. 

To confirm the robustness of the detection to the random slippage, the signal from the most 

severe 2% slippage was added to each of the white noises case A and B, and the resulting 

signals E and F were evaluated with the two detection methods. Fig. 13(a) and (c) show that 

the MSB detector can still find the correct frequency bands and hence can produce a reliable 

detection result for the Case E signal which has a SNR of -14.7dB. This result agrees with 

that of the Kurtogram-based detector, the results of which are shown in Fig. 13(b) and (c), in 

that the optimal frequency band is centralised around 0 11719f Hz , which is the third 
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resonance band, and also that there are significant components at 89Hz which is the 

characteristic fault frequency of the outer race. It worth noting that the MSB detector selects a 

number of continuous peaks from the compound MSB slice ( )cB f  because of the spectral 

smearing effect induced by the random slippage, rather than just a few discrete peaks for no 

slippage cases. This shows that the MSB detector also offers excellent performance even if 

the modulation signal has spectral smearing effect due to roller slippage and under moderate 

random noise conditions (Case E). 

 

Fig. 12 Impulse responses with random roller slippages: (a) the time randomness of fault 

feature pulses relative to the base period; (b) the time domain responses; and (c) the spectra 
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When the SNR1 becomes even lower than -15dB, by adding more white noise, the 

Kurtogram-based detector can no longer find the optimal bands and is hence unable to 

produce a correct detection result. In contrast, the MSB detector can still produce a correct 

detection even with the SNR as low as -22dB (Case F). Fig. 14(a) and (c) show that, in 

addition to the significant fault component, the MSB detector also produces some observable 

components in the low frequency range, most probably due to the spectrum smearing effect 

induced by the random slippage. Although these low frequency components could lead to the 

potentially spurious detection of faults such as a bearing cage issue or a misalignment, the 

primary fault on the outer race has much greater amplitude than these low frequency features 

and can be detected without any difficulty. 

The robustness of the MSB detector to noise when slippage effects are present is 

understandably lower than without slippage because the slippage responses already have 

substantial random effects contained within them. 

From these simulation studies, it can be concluded that in principle the proposed MSB 

detector is robust to white noise, to aperiodic impulsive interferences and also to random 

roller slippages, and that in severe noise cases it outperforms the Kurtogram-based approach.  
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Fig. 13 Detection results from two detectors for the signal with high random slippage 

(2%), low noise (SNR1=-14.7dB) and low impulsive interferences (SNR2=-28.3dB), Case E: 

(a) the compound MSB slice ( )cB f ; (b) Kurtogram; (c) MSB robust detector; (d) Kurtogram 

based detector 
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Fig. 14 Detection results from two detectors for high random slippage (2%) high 

noise (SNR1=-22dB) and low impulsive interferences (SNR2=-35.7dB), Case F 

(a) the compound MSB slice ( )cB f ; (b) Kurtogram; (c) MSB robust detector; (d) 

Kurtogram based detector 

4. Application case studies 

To explore the practical application of the MSB detector alongside the Kurtogram-

based detector, two bearing application cases have been investigated. One is for the bearing in 

an induction motor and the other is for the bearing in a planetary gearbox. Motor vibration 

can generally be expected to have lower noise and a narrower bandwidth compared to 

planetary gearbox vibration, where signals can be expected to contain higher noise levels and 

a wider bandwidth because of the impulsive excitations caused by the complex gear meshing 
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processes. The monitoring of electric motor driver has always been of interest because of their 

popularity and importance as prime moves but the condition monitoring of planetary 

gearboxes has also received much attention in more recent years because of their prominence 

in wind turbine applications [26] [27].  

4.1 Motor bearing fault detection 

4.1.1 Experimental setup 

The experimental data of the motor bearing analysed in this paper was collected from 

the bearing test rig illustrated in Fig. 15. It is comprised of a motor, coupling, intermediate 

shaft, supporting bearings and electrical brake. The vibration sensor was located in the 

vertical direction on the motor drive end bearing housing. Fig. 16 shows a photograph of the 

tested bearing, with a small seeded outer race defect. 
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bearing

Flexible 

coupling

Vibration 
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Supporting 

bearing
AC motor Shaft encoder

 

Fig. 15 Photograph of the motor bearing test rig 

The tested motor bearing was a NSK Type 6206ZZ deep groove ball bearing with 

geometry listed in Table 2. The frequency range of the piezoelectric accelerometer used to 
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collect the data was 0.5Hz to 10kHz and the sensitivity was 1.04mV/ms2. The data was 

acquired with a sample rate of 96kHz and 24-bit resolution.  

 

Fig. 16 Photographs of the test bearing with a small seeded outer race defect 

Table 2. Specification of NSK Type 6206ZZ deep groove ball bearing 

Parameter Measurement 

Pitch Diameter cD  46.4mm 

Ball Diameter bD  9.53mm 

Ball Number rN  9 

Contact Angle   0˚ 

Given the horizontal orientation of the shafts in the machine, and the minimal axial 

load applied to the test bearing, the contact angle (φ) was assumed to be zero. 

4.1.2 Detection results and discussion 

Fig. 17 shows the vibration time waveform collected on the bearing test rig, along 

with its associated spectrum. From the vibration spectrum, it can be seen that there are two 

main resonance frequencies at approximately 2.5kHz and 7kHz. The optimised filter central 

frequency from the Kurtogram is at 2187.5kHz and bandwidth is 625Hz.  



29 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.05

0

0.05

(a)

Time (s)

A
m

p
li

tu
d
e(

m
s-2

)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

x 10
-3

(b)

Frequency (Hz)

A
m

p
li

tu
d
e(

m
s-2

)

R2

R1

 

Fig. 17 Waveform of the motor vibration and its spectrum: (a) waveform; and (b) spectrum 

Fig. 18 shows the compound MSB slice ( )cB f  and the normalised results of the MSB 

detector. The characteristic frequencies of the tested bearing are marked by different colours 

of dashed line, with if , of , cagef  and bf  indicating the characteristic frequencies of faults 

on the inner race, outer race, cage and ball respectively. The suboptimal cf  slices are selected 

in the range from 6.4kHz to 7.1kHz which corresponds to the second resonance frequency in 

Fig. 17(b). From the MSB detector results in Fig. 18(b), it can be seen that there is one 

distinctive peak at the outer race fault frequency. In addition, small peaks appear at the cage 

fault frequency and its harmonics, but no peaks can be observed at the ball fault frequency or 

the inner race fault frequency. These results demonstrate that the outer race fault can readily 

be detected in the test bearing. The presence of the cage fault frequency was unanticipated 

may be caused by manufacturing effects or inadvertent damage during bearing installation. 
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The Kurtogram based detector shown in Fig. 18(c) also provides clear indication of the 

bearing outer race defect. 

 

Fig. 18 Results of the MSB robust detector: (a) the compound MSB slice ( )cB f ; (b) MSB 

robust detector; and (c) Kurtogram based detector 

4.2 Planetary gearbox bearing fault detection 

4.2.1 Experimental setup 

To assess the effectiveness of the MSB detector for use in low SNR conditions, 

vibration signals acquired from a planetary gearbox test system were investigated. The test rig 

shown in Fig. 19, uses a planetary gearbox with a rated torque of 670Nm, and a maximum 

input speed of 2800rpm with a resulting output speed of 388rpm. The schematic in Fig. 20 

illustrates the position of the accelerometer that was mounted on the outer housing of the ring 
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gear along with the location of the test bearing. In contrast to the outer race fault seeded in the 

motor bearing, in this test an inner race fault was seeded, as shown in Fig. 21.  

DC 
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Motor
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Fig. 19 Photograph of the planetary gearbox test rig 

Bearing 

position
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position

Input Output

 

Fig. 20 Schematic for a planetary gearbox 

 

Fig. 21 Inner race defect on bearing 
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The tested bearing was an SKF Type 6008 deep groove ball bearing with geometry as 

listed in Table 3. The linear frequency range of the vibration accelerometer used to collect the 

data was 0.5Hz to 10kHz, with a resonance higher than 35kHz and a sensitivity of 

28.7mV/ms-2. The data was again acquired with a sample rate of 96kHz and 24-bit resolution. 

Table 3. Specification of SKF 6008 deep groove ball bearing 

Parameter Measurement 

Pitch Diameter cD  54mm 

Ball Diameter bD  7.9mm 

Ball Number rN  12 

Contact Angle   0˚ 

Given the horizontal orientation of the shafts in the machine, and the minimal axial 

load applied to the test bearing, the contact angle (φ) was assumed to be zero. 

4.2.2 Detection results and discussion 

Fig. 22 shows the waveform of the measured vibration signal and its spectrum. From 

Fig. 22(a), it can be seen that many impulses exist in the vibration signal, generated by the 

complex rotation and meshing dynamics of the planetary gearbox. Fig. 22(b) shows that there 

are four possible main resonance frequencies at approximately 1.2kHz, 2kHz. 6kHz and 9kHz. 

The optimised filter location from the Kurtogram has a central frequency of 5703.1Hz and 

bandwidth of 156.3Hz, which corresponds to the third resonance frequency.  

For the planetary gearbox vibration signal analysis, it is necessary to check the 

nonlinear degree of the signal. Because the vibration of planetary gearbox is quite complex, it 

includes both vibration of gear meshing and bearing. The collected vibration is the 

superposition of all the components, which can reduce the coupling degree between the 

components. To measure the degree of coupling between three components, a modulation 

signal bicoherence (MSBc) can be used and calculated as follows:  
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Fig. 22 Time waveform of planetary gearbox vibration and its spectrum: (a) waveform; and (b) 

spectrum 

 

Fig. 23 MSB coherence of planetary gearbox vibration 
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The MSBc result of the planetary vibration signal is shown in Fig. 23. It can be seen 

that the coherence is low when cf  is higher than 6kHz, which means the modulation effect is 

weak and the MSB result is not reliable in this frequency range. Therefore, the highest 

resonance frequency R4 is excluded for the calculation of the MSB detector. 

 

Fig. 24 Results of the MSB detector and the Kurtogram-based detector: (a) the compound 

MSB slice ( )cB f ; (b) MSB robust detector; and (c) Kurtogram based detector 

( )cB f  is presented in Fig. 24(a), and this shows that the selected suboptimal cf  

slices exist in the range from 1.1kHz to 1.5kHz which corresponds to the second resonance 

frequency of Fig. 24(b). The normalised results of the MSB detector are presented in Fig. 

24(b). The characteristic frequency positions for the test bearing if , of , bf  and cagef  
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indicate the fault characteristic frequencies of the bearing inner race, outer race, ball, and cage 

respectively. rsf , rscf , and sff  denote the shaft rotational frequency, the difference between 

the shaft rotational frequency and the carrier rotational frequency, and the sun gear fault 

frequency calculated by Eq. (13) [28] respectively.  

 sf rs rcf K f f         (13) 

where K is the number of planetary gears, and rcf  is the carrier rotating frequency 

Unfortunately, the bearing outer race fault frequency coincides with the sun gear fault 

frequency, which potentially would make it difficult to distinguish between these two types of 

fault. From the MSB robust detector shown in Fig. 24(b), it can be seen that there is one 

distinctive peak at the inner race fault frequency of the bearing along with two small peaks at 

its second and third harmonics. This result shows that inner race fault can be 

straightforwardly detected in the test bearing. Small peaks also appear at the sun gear fault 

frequency or the bearing outer race fault frequency and harmonics thereof. These peaks are 

also unanticipated and may again be due to manufacturing effects or inadvertent installation 

damage. This means that the MSB robust detector can achieve accurate and reliable bearing 

fault diagnosis even if in a low SNR, high impact environment like planetary gearbox 

vibration. 

From the results of the Kurtogram based detector, illustrated in Fig. 24(c), it can be 

seen that there are numerous frequency peaks associated with the sun gear fault/outer race 

fault, the inner race fault, and their harmonics. However, it is difficult to identify the bearing 

fault because the amplitudes of the bearing characteristic frequencies are significantly smaller 
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than other frequency components such as the sun gear fault frequency/outer race frequency, 

which was also further confirmed by setting filter band around the R4 shown in Fig. 22(b). 

5. Conclusions 

Based on the proven performance of the MSB in suppressing random noise and 

decomposing the nonlinear modulation components [11, 15-17], a novel MSB detector has 

been developed using a number of significant MSB peaks, which are optimal in terms of 

maximising the modulation contents of bearing fault signals. Simulated signals with different 

levels of white noise, aperiodic impulsive interference and random roller slippages have been 

applied to demonstrate the robust performance of the new approach, and its capability has 

been shown to exceed that of the Kurtogram compared with that of the Kurtogram-based 

detector. The application to signals from a planetary gearbox shows that the new approach 

can successfully detect bearing faults in circumstances where the noisy signal contains high 

levels of modulation due to other impact phenomena. 
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