318 research outputs found

    Repeated slip along a major decoupling horizon between crustal-scale nappesof the Central Western Carpathians documented in the Ochtinà tectonicmélange

    No full text
    International audienceThe Ochtiná Unit is situated in the ENE-WSW-trending contact zone between two crustal-scale nappes, the upper Gemer Unit and the lower Vepor Unit, in the Central Western Carpathians, Slovakia. The Ochtiná Unit consists mainly of Carboniferous phyllitic schists and sandstones enclosing lenses of diverse lithological nature and contrasting metamorphic history. Peak PT conditions obtained by means of phase equilibrium modelling from lenses of amphibolite and chloritoid schist in this unit indicate 500-600 °C and 4-6.5 kbar and 500-520 °C and 9-11 kbar, respectively. These PT conditions contrast not only with the greenschist-facies metamorphism of dominant phyllite but also with each other documenting two distinct metamorphic field gradients related to Variscan and Alpine metamorphic events. Geochemical data reveal an affinity of the amphibolite lenses to similar Variscan rocks in the basement of the upper Gemer Unit and of the chloritoid schist to similar Alpine rocks in the cover of the lower Vepor Unit. Such heterogeneous lithological and metamorphic record is consistent with a block-in-matrix rock arrangement and the Ochtiná Unit is interpreted as deep seated tectonic mélange. The mélange evolved via repeated slip along the rheologically weak sediments of the Ochtiná Unit during the building and collapse of the Eo-Alpine orogenic wedge of the Central Western Carpathians. Deformation record indicates that the mélange separates two distinct structural domains marked by a decoupled behaviour, i.e. the orogenic suprastructure represented by the Gemer Unit and the infrastructure represented by the Vepor Unit. With this respect, the Ochtiná Unit represents an unusual example of a suprastructure-infrastructure transition zone with its position being controlled by the mechanical weakness of this sedimentary horizon and not by the temperature-dependent rheological transition

    A low-complexity sub-Nyquist sampling system for wideband Radar ESM receivers

    Get PDF
    International audienc

    Improved assay-dependent searching of nucleic acid sequence databases

    Get PDF
    Nucleic acid-based biochemical assays are crucial to modern biology. Key applications, such as detection of bacterial, viral and fungal pathogens, require detailed knowledge of assay sensitivity and specificity to obtain reliable results. Improved methods to predict assay performance are needed for exploiting the exponentially growing amount of DNA sequence data and for reducing the experimental effort required to develop robust detection assays. Toward this goal, we present an algorithm for the calculation of sequence similarity based on DNA thermodynamics. In our approach, search queries consist of one to three oligonucleotide sequences representing either a hybridization probe, a pair of Padlock probes or a pair of PCR primers with an optional TaqMan™ probe (i.e. in silico or ‘virtual’ PCR). Matches are reported if the query and target satisfy both the thermodynamics of the assay (binding at a specified hybridization temperature and/or change in free energy) and the relevant biological constraints (assay sequences binding to the correct target duplex strands in the required orientations). The sensitivity and specificity of our method is evaluated by comparing predicted to known sequence tagged sites in the human genome. Free energy is shown to be a more sensitive and specific match criterion than hybridization temperature

    Crustal influx, indentation, ductile thinning and gravity redistribution in a continental wedge: Building a Moldanubian mantled gneiss dome with underthrust Saxothuringian material (European Variscan belt)

    Get PDF
    27 p.International audience[1] The contribution of lateral forces, vertical load, gravity redistribution and erosion to the origin of mantled gneiss domes in internal zones of orogens remains debated. In the Orlica-Snieznik dome (Moldanubian zone, European Variscan belt), the polyphase tectono-metamorphic history is initially characterized by the development of subhorizontal fabrics associated with medium- to high-grade metamorphic conditions in different levels of the crust. It reflects the eastward influx of a Saxothuringian-type passive margin sequence below a Teplá-Barrandian upper plate. The ongoing influx of continental crust creates a thick felsic orogenic root with HP rocks and migmatitic orthogneiss. The orogenic wedge is subsequently indented by the eastern Brunia microcontinent producing a multiscale folding of the orogenic infrastructure. The resulting kilometre-scale folding is associated with the variable burial of the middle crust in synforms and the exhumation of the lower crust in antiforms. These localized vertical exchanges of material and heat are coeval with a larger crustal-scale folding of the whole infrastructure generating a general uplift of the dome. It is exemplified by increasing metamorphic conditions and younging of 40Ar/39Ar cooling ages toward the extruded migmatitic subdomes cored by HP rocks. The vertical growth of the dome induces exhumation by pure shear-dominated ductile thinning laterally evolving to non-coaxial detachment faulting, while erosion feeds the surrounding sedimentary basins. Modeling of the Bouguer anomaly grid is compatible with crustal-scale mass transfers between a dense superstructure and a lighter infrastructure. The model implies that the Moldanubian Orlica-Snieznik mantled gneiss dome derives from polyphase recycling of Saxothuringian material

    Time course and association of functional and biochemical markers in severe semitendinosus damage following intensive eccentric leg curls: differences between and within subjects

    Get PDF
    Purpose: To investigate the extent and evolution of hamstring muscle damage caused by an intensive bout of eccentric leg curls (ELCs) by (1) assessing the time course and association of different indirect markers of muscle damage such as changes in the force-generating capacity (FGC), functional magnetic resonance (fMRI), and serum muscle enzyme levels and (2) analyzing differences in the degree of hamstring muscle damage between and within subjects (limb-to-limb comparison). Methods: Thirteen male participants performed six sets of 10 repetitions of an ELC with each leg. Before and at regular intervals over 7 days after the exercise, FGC was measured with maximal isometric voluntary contraction (MVC). Serum enzyme levels, fMRI transverse relaxation time (T2) and perceived muscle soreness were also assessed and compared against the FGC. Results: Two groups of subjects were identified according to the extent of hamstring muscle damage based on decreased FGC and increased serum enzyme levels: high responders (n = 10, severe muscle damage) and moderate responders (n = 3, moderate muscle damage). In the high responders, fMRI T2 analysis revealed that the semitendinosus (ST) muscle suffered severe damage in the three regions measured (proximal, middle, and distal). The biceps femoris short head (BFsh) muscle was also damaged and there were significant differences in the FGC within subjects in the high responders. Conclusion: FGC and serum enzyme levels measured in 10 of the subjects from the sample were consistent with severe muscle damage. However, the results showed a wide range of peak MVC reductions, reflecting different degrees of damage between subjects (high and moderate responders). fMRI analysis confirmed that the ST was the hamstring muscle most damaged by ELCs, with uniform T2 changes across all the measured sections of this muscle. During intensive ELCs, the ST muscle could suffer an anomalous recruitment pattern due to fatigue and damage, placing an excessive load on the BFsh and causing it to perform a synergistic compensation that leads to structural damage. Finally, T2 and MVC values did not correlate for the leg with the smaller FGC decrease in the hamstring muscles, suggesting that long-lasting increases in T2 signals after FGC markers have returned to baseline values might indicate an adaptive process rather than damage

    FAD binding, cobinamide binding and active site communication in the corrin reductase (CobR)

    Get PDF
    Adenosylcobalamin, the coenzyme form of vitamin B12, is one Nature's most complex coenzyme whose de novo biogenesis proceeds along either an anaerobic or aerobic metabolic pathway. The aerobic synthesis involves reduction of the centrally chelated cobalt metal ion of the corrin ring from Co(II) to Co(I) before adenosylation can take place. A corrin reductase (CobR) enzyme has been identified as the likely agent to catalyse this reduction of the metal ion. Herein, we reveal how Brucella melitensis CobR binds its coenzyme FAD (flavin dinucleotide) and we also show that the enzyme can bind a corrin substrate consistent with its role in reduction of the cobalt of the corrin ring. Stopped-flow kinetics and EPR reveal a mechanistic asymmetry in CobR dimer that provides a potential link between the two electron reduction by NADH to the single electron reduction of Co(II) to Co(I)

    Level of hamstrings damage depending on force-generating capacity and creatine kinase activity

    Get PDF
    The aim of the present study was to categorize the eccentric exercise-induced hamstrings damage by using easy measurable markers such as force-generating capacity and serum creatine kinase activityPeer ReviewedPostprint (published version

    Structural neural networks subserving oculomotor function in first-episode schizophrenia

    Get PDF
    BACKGROUND: Smooth pursuit and antisaccade abnormalities are well documented in schizophrenia, but their neuropathological correlates remain unclear. METHODS: In this study, we used statistical parametric mapping to investigate the relationship between oculomotor abnormalities and brain structure in a sample of first-episode schizophrenia patients (n = 27). In addition to conventional volumetric magnetic resonance imaging, we also used magnetization transfer ratio, a technique that allows more precise tissue characterization. RESULTS: We found that smooth pursuit abnormalities were associated with reduced magnetization transfer ratio in several regions, predominantly in the right prefrontal cortex. Antisaccade errors correlated with gray matter volume in the right medial superior frontal cortex as measured by conventional magnetic resonance imaging but not with magnetization transfer ratio. CONCLUSIONS: These preliminary results demonstrate that specific structural abnormalities are associated with abnormal eye movements in schizophrenia

    MICA: desktop software for comprehensive searching of DNA databases

    Get PDF
    BACKGROUND: Molecular biologists work with DNA databases that often include entire genomes. A common requirement is to search a DNA database to find exact matches for a nondegenerate or partially degenerate query. The software programs available for such purposes are normally designed to run on remote servers, but an appealing alternative is to work with DNA databases stored on local computers. We describe a desktop software program termed MICA (K-Mer Indexing with Compact Arrays) that allows large DNA databases to be searched efficiently using very little memory. RESULTS: MICA rapidly indexes a DNA database. On a Macintosh G5 computer, the complete human genome could be indexed in about 5 minutes. The indexing algorithm recognizes all 15 characters of the DNA alphabet and fully captures the information in any DNA sequence, yet for a typical sequence of length L, the index occupies only about 2L bytes. The index can be searched to return a complete list of exact matches for a nondegenerate or partially degenerate query of any length. A typical search of a long DNA sequence involves reading only a small fraction of the index into memory. As a result, searches are fast even when the available RAM is limited. CONCLUSION: MICA is suitable as a search engine for desktop DNA analysis software
    corecore