5 research outputs found

    Cardiovascular risk in early psychosis. Relationship with inflammation and clinical features 6 months after diagnosis

    Full text link
    Background: We aimed to investigate the state of cardiovascular risk/protection factors in early psychosis patients. Methods: A total 119 subjects were recruited during the first year after their first episode of psychosis. Eighty-five of these subjects were followed during the next 6 months. Cardiovascular risk/protection factors were measured in plasma and co-variated by sociodemographic/clinical characteristics. Multiple linear regression models detected the change of each biological marker from baseline to follow-up in relation to clinical scales, antipsychotic medication, and pro-/antiinflammatory mediators. Results: Glycosylated hemoglobin is a state biomarker in first episode of psychosis follow-up patients and inversely correlated to the Global Assessment of Functioning scale. We found opposite alterations in the levels of VCAM-1 and E-selectin in first episode of psychosis baseline conditions compared with control that were absent in the first episode of psychosis follow-up group. Adiponectin levels decreased in a continuum in both pathological time points studied. E-Selectin plasma levels were inversely related to total antipsychotic equivalents and adiponectin levels inversely co-related to the Global Assessment of Functioning scale. Finally, adiponectin levels were directly related to antiinflammatory nuclear receptor PPARγ expression in first episode of psychosis baseline conditions and to proinflammatory nuclear factor nuclear factor κB activity in follow-up conditions, respectively. Conclusions: Our results support the need for integrating cardiovascular healthcare very early after the first episode of psychosis

    Changes in the Frontotemporal Cortex and Cognitive Correlates in First-Episode Psychosis

    Get PDF
    Background: Loss of cortical volume in frontotemporal regions has been reported in patients with schizophrenia and their relatives. Cortical area and thickness are determined by different genetic processes, and measuring these parameters separately may clarify disturbances in corticogenesis relevant to schizophrenia. Our study also explored clinical and cognitive correlates of these parameters.Methods: Thirty-seven patients with first-episode psychosis (34 schizophrenia, 3 schizoaffective disorder) and 38 healthy control subjects matched for age and sex took part in the study. Imaging was performed on an magnetic resonance imaging 1.5-T scanner. Area and thickness of the frontotemporal cortex were measured using a surface-based morphometry method (Freesurfer). All subjects underwent neuropsychologic testing that included measures of premorbid and current IQ, working and verbal memory, and executive function.Results: Reductions in cortical area, more marked in the temporal cortex, were present in patients. Overall frontotemporal cortical thickness did not differ between groups, although regional thinning of the right superior temporal region was observed in patients. There was a significant association of both premorbid IQ and IQ at disease onset with area, but not thickness, of the frontotemporal cortex, and working memory span was associated with area of the frontal cortex. These associations remained significant when only patients with schizophrenia were considered.Conclusions: Our results suggest an early disruption of corticogenesis in schizophrenia, although the effect of subsequent environmental factors cannot be excluded. In addition, cortical abnormalities are subject to regional variations and differ from those present in neurodegenerative diseases
    corecore