50 research outputs found

    Estimating size-specific brook trout abundance in continuously sampled headwater streams using Bayesian mixed models with zero inflation and overdispersion

    Get PDF
    Abstract -We examined habitat factors related to reach-scale brook trout Salvelinus fontinalis counts of four size classes in two headwater stream networks within two contrasting summers in Connecticut, USA. Two study stream networks (7.7 and 4.4 km) were surveyed in a spatially continuous manner in their entirety, and a set of Bayesian generalised linear mixed models was compared. Trout abundance was best described by a zero-inflated overdispersed Poisson model. The effect of habitat covariates was not always consistent among size classes and years. There were nonlinear relationships between trout counts and stream temperature in both years. Colder reaches harboured higher trout counts in the warmer summer of 2008, but this pattern was not observed in the cooler and very wet summer of 2009. Amount of pool habitat was nearly consistently important across size classes and years, and counts of the largest size class were correlated positively with maximum depth and negatively with stream gradient. Spatial mapping of trout distributions showed that reaches with high trout counts may differ among size classes, particularly between the smallest and largest size classes, suggesting that movement may allow the largest trout to exploit spatially patchy habitats in these small headwaters

    Closing the gap between science and management of cold-water refuges in rivers and streams

    Get PDF
    Human activities and climate change threaten coldwater organisms in freshwater eco-systems by causing rivers and streams to warm, increasing the intensity and frequency of warm temperature events, and reducing thermal heterogeneity. Cold-water refuges are discrete patches of relatively cool water that are used by coldwater organisms for thermal relief and short-term survival. Globally, cohesive management approaches are needed that consider interlinked physical, biological, and social factors of cold-water refuges. We review current understanding of cold-water refuges, identify gaps between science and management, and evaluate policies aimed at protecting thermally sensitive species. Existing policies include designating cold-water habitats, restricting fishing during warm periods, and implementing threshold temperature standards or guidelines. However, these policies are rare and uncoordinated across spatial scales and often do not consider input from Indigenous peoples. We propose that cold-water refuges be managed as dis-tinct operational landscape units, which provide a social and ecological context that is relevant at the watershed scale. These operational landscape units provide the founda-tion for an integrated framework that links science and management by (1) mapping and characterizing cold-water refuges to prioritize management and conservation actions, (2) leveraging existing and new policies, (3) improving coordination across jurisdictions, and (4) implementing adaptive management practices across scales. Our findings show that while there are many opportunities for scientific advancement, the current state of the sciences is sufficient to inform policy and management. Our proposed framework pro-vides a path forward for managing and protecting cold-water refuges using existing and new policies to protect coldwater organisms in the face of global change. behavioral thermoregulation, climate change adaptation, lotic ecosystem management, refugia, salmonids, temperature, thermal heterogeneity, thermal refugespublishedVersio

    Population Response to Habitat Fragmentation in a Stream-Dwelling Brook Trout Population

    Get PDF
    Fragmentation can strongly influence population persistence and expression of life-history strategies in spatially-structured populations. In this study, we directly estimated size-specific dispersal, growth, and survival of stream-dwelling brook trout in a stream network with connected and naturally-isolated tributaries. We used multiple-generation, individual-based data to develop and parameterize a size-class and location-based population projection model, allowing us to test effects of fragmentation on population dynamics at local (i.e., subpopulation) and system-wide (i.e., metapopulation) scales, and to identify demographic rates which influence the persistence of isolated and fragmented populations. In the naturally-isolated tributary, persistence was associated with higher early juvenile survival (∌45% greater), shorter generation time (one-half) and strong selection against large body size compared to the open system, resulting in a stage-distribution skewed towards younger, smaller fish. Simulating barriers to upstream migration into two currently-connected tributary populations caused rapid (2–6 generations) local extinction. These local extinctions in turn increased the likelihood of system-wide extinction, as tributaries could no longer function as population sources. Extinction could be prevented in the open system if sufficient immigrants from downstream areas were available, but the influx of individuals necessary to counteract fragmentation effects was high (7–46% of the total population annually). In the absence of sufficient immigration, a demographic change (higher early survival characteristic of the isolated tributary) was also sufficient to rescue the population from fragmentation, suggesting that the observed differences in size distributions between the naturally-isolated and open system may reflect an evolutionary response to isolation. Combined with strong genetic divergence between the isolated tributary and open system, these results suggest that local adaptation can ‘rescue’ isolated populations, particularly in one-dimensional stream networks where both natural and anthropogenically-mediated isolation is common. However, whether rescue will occur before extinction depends critically on the race between adaptation and reduced survival in response to fragmentation

    Closing the gap between science and management of cold‐water refuges in rivers and streams

    Get PDF
    Human activities and climate change threaten coldwater organisms in freshwater ecosystems by causing rivers and streams to warm, increasing the intensity and frequency of warm temperature events, and reducing thermal heterogeneity. Cold-water refuges are discrete patches of relatively cool water that are used by coldwater organisms for thermal relief and short-term survival. Globally, cohesive management approaches are needed that consider interlinked physical, biological, and social factors of cold-water refuges. We review current understanding of cold-water refuges, identify gaps between science and management, and evaluate policies aimed at protecting thermally sensitive species. Existing policies include designating cold-water habitats, restricting fishing during warm periods, and implementing threshold temperature standards or guidelines. However, these policies are rare and uncoordinated across spatial scales and often do not consider input from Indigenous peoples. We propose that cold-water refuges be managed as distinct operational landscape units, which provide a social and ecological context that is relevant at the watershed scale. These operational landscape units provide the foundation for an integrated framework that links science and management by (1) mapping and characterizing cold-water refuges to prioritize management and conservation actions, (2) leveraging existing and new policies, (3) improving coordination across jurisdictions, and (4) implementing adaptive management practices across scales. Our findings show that while there are many opportunities for scientific advancement, the current state of the sciences is sufficient to inform policy and management. Our proposed framework provides a path forward for managing and protecting cold-water refuges using existing and new policies to protect coldwater organisms in the face of global change

    High-level classification of the Fungi and a tool for evolutionary ecological analyses

    Get PDF
    High-throughput sequencing studies generate vast amounts of taxonomic data. Evolutionary ecological hypotheses of the recovered taxa and Species Hypotheses are difficult to test due to problems with alignments and the lack of a phylogenetic backbone. We propose an updated phylum-and class-level fungal classification accounting for monophyly and divergence time so that the main taxonomic ranks are more informative. Based on phylogenies and divergence time estimates, we adopt phylum rank to Aphelidiomycota, Basidiobolomycota, Calcarisporiellomycota, Glomeromycota, Entomophthoromycota, Entorrhizomycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota and Olpidiomycota. We accept nine subkingdoms to accommodate these 18 phyla. We consider the kingdom Nucleariae (phyla Nuclearida and Fonticulida) as a sister group to the Fungi. We also introduce a perl script and a newick-formatted classification backbone for assigning Species Hypotheses into a hierarchical taxonomic framework, using this or any other classification system. We provide an example of testing evolutionary ecological hypotheses based on a global soil fungal data set.Peer reviewe

    Finding needles in haystacks:Linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Reannotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.The Intramural Research Programs of the National Center for Biotechnology Information, National Library of Medicine and the National Human Genome Research Institute, both at the National Institutes of Health.http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353am201

    Finding needles in haystacks : linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Reannotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.The Intramural Research Programs of the National Center for Biotechnology Information, National Library of Medicine and the National Human Genome Research Institute, both at the National Institutes of Health.http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353am201

    Effects of food density on growth and on patterns of prey depletion by larval silverside fish, Menidia beryllina (Cope); a laboratory investigation with image analysis

    No full text
    The growth and daily prey depletion rates of inland silverside (Menidia beryllina (Cope)) larvae fed different rations (0, 25, 50, 100, or 150 percent of the fishes\u27 initial wet weight) of Artemia nauplii during the period 7 days to 14 days post-hatch were investigated. Instantaneous growth rates ranged from -0.174·day-1 for unfed fish, to 0.181·day-1 for fish fed the 150% ration. Relative consumption rates increased from 0.179 (mg food·(mg fish)-1·day-1) at the lowest ration (25%) to 0.440 (mg food·(mg fish)-1·day-1) at the highest ration (150%) and were linearly related to relative growth rates (mg·(mg fish)-1·day-1) across the range of consumption rates studied. Gross growth efficiencies ranged from -0.020 to 0.376, from lowest (25%) to highest (150%) ration. On one day of the 7-day study, the within-day patterns of food depletion by the fish also were examined with image analysis. Fish ingested food at a constant rate, as long as it was available up to 11 h of feeding. On average, depletion rates in the first 4 h of feeding were not significantly different among fish fed the four rations; however, the depletion rates of the fish fed the 150% ration were significantly higher during the second 4 h of feeding than during the first 4 h. The results provide information for the calculation of a preliminary energy budget for M. beryllina, and also provide aquatic toxicologists with information for the conduct of standard effluent toxicity tests. The daily ration prescribed in the current standard method is approximately three times the amount that can actually be ingested by the larvae. Through the use of our data and image analyzer measurements of food consumed by M. beryllina in the 7-day test, investigators might be better able to identify causes of reduction in growth. © 1993

    Data from: Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks

    No full text
    Linear and heterogeneous habitat makes headwater stream networks an ideal ecosystem in which to test the influence of environmental factors on spatial genetic patterns of obligatory aquatic species. We investigated fine-scale population structure and influence of stream habitat on individual-level genetic differentiation in brook trout (Salvelinus fontinalis) by genotyping eight microsatellite loci in 740 individuals in two headwater channel networks (7.7 km and 4.4 km) in Connecticut, USA. A weak but statistically significant isolation-by-distance pattern was ubiquitous in both sites. In the field, many tagged individuals were recaptured in the same 50m-reaches within a single field season (summer to fall). One study site was characterized with a hierarchical population structure, where seasonal barriers (natural falls > 1.5 m in height) greatly reduced gene flow and weaker spatial patterns emerged due to the presence of tributaries, each with a group of genetically distinguishable individuals. Genetic differentiation increased when pairs of individuals were separated by high stream gradient (steep channel slope) or warm stream temperature in this site, although the evidence of their influence was equivocal. In a second site, evidence for genetic clusters was very weak at the most, but genetic differentiation between individuals was positively correlated with number of tributary confluences. We concluded that the movement of brook trout was limited in the study headwater streams, resulting in the fine-scale population structure (genetic clusters and clines) even at distances of a few kilometers, and gene flow was mitigated by “riverscape” variables, particularly by physical barriers, waterway distance (i.e., isolation-by-distance) and the presence of tributaries
    corecore