577 research outputs found

    Expression of Intestine-Specific Antigen Reveals Novel Pathways of CD8 T Cell Tolerance Induction

    Get PDF
    AbstractReactivity to intestinal epithelium-specific antigen was studied by transgenic expression of cytosolic ovalbumin controlled by an enterocyte-specific promoter. Transferred OVA-specific CD8 cells (OT-I) preferentially expanded in mucosal lymphoid tissues and the epithelium but failed to cause tissue damage. In contrast, concomitant VSV-ova infection induced OT-I-mediated epithelial cell destruction that correlated with antigen density. OT-I cells retained in the epithelium exhibited high levels of lytic activity but were unable to produce cytokines. The mice were systemically tolerant to OVA since endogenous CD8 cells were nonresponsive to VSV-ova infection. Thus, intestinal antigen gained access to peripheral tissues via absorption from effete epithelial cells. This system demonstrated a requirement for inflammation to drive pathogenic autoreactivity against enterocytes and identified pathways of intestine-specific immunoregulation

    Avidity maturation of memory CD8 T cells is limited by self-antigen expression

    Get PDF
    Immune tolerance to self-antigens is a complex process that utilizes multiple mechanisms working in concert to maintain homeostasis and prevent autoimmunity. We developed a system that revealed a population of self-specific CD8 T cells within the endogenous T cell repertoire. Immunization of ovalbumin (OVA)-expressing transgenic mice with recombinant viruses expressing OVA-peptide variants induced self-reactive T cells in vivo that matured into memory T cells able to respond to secondary infection. However, whereas the avidity of memory cells in normal mice increased dramatically with repeated immunizations, avidity maturation was limited for self-specific CD8 T cells. Despite decreased avidity, such memory cells afforded protection against infection, but did not induce overt autoimmunity. Further, up-regulation of self-antigen expression in dendritic cells using an inducible system promoted programmed death-1 expression, but not clonal expansion of preexisting memory cells. Thus, the self-reactive T cell repertoire is controlled by overlapping mechanisms influenced by antigen dose

    The Role of β7 Integrins in CD8 T Cell Trafficking During an Antiviral Immune Response

    Get PDF
    The requirement of β7 integrins for lymphocyte migration was examined during an ongoing immune response in vivo. Transgenic mice (OT-I) expressing an ovalbumin-specific major histocompatibility complex class I–restricted T cell receptor for antigen were rendered deficient in expression of all β7 integrins or only the αEβ7 integrin. To quantitate the relative use of β7 integrins in migration in vivo, equal numbers of OT-I and OT-I-β7−/− or OT-I-αE−/− lymph node (LN) cells were adoptively transferred to normal mice. Although OT-I-β7−/− LN cells migrated to mesenteric LN and peripheral LN as well as wild-type cells, β7 integrins were required for naive CD8 T cell and B cell migration to Peyer's patch. After infection with a recombinant virus (vesicular stomatitis virus) encoding ovalbumin, β7 integrins became critical for migration of activated CD8 T cells to the mesenteric LN and Peyer's patch. Naive CD8 T cells did not enter the lamina propria or the intestinal epithelium, and the majority of migration of activated CD8 T cells to the small and large intestinal mucosa, including the epithelium, was β7 integrin–mediated. The αEβ7 integrin appeared to play no role in migration during a primary CD8 T cell immune response in vivo. Furthermore, despite dramatic upregulation of αEβ7 by CD8 T cells after entry into the epithelium, long-term retention of intestinal intraepithelial lymphocytes was also αEβ7 independent

    Heat Shock Protein gp96 Is a Master Chaperone for Toll-like Receptors and Is Important in the Innate Function of Macrophages

    Get PDF
    Summarygp96 is an endoplasmic reticulum chaperone for cell-surface Toll-like receptors (TLRs). Little is known about its roles in chaperoning other TLRs or in the biology of macrophage in vivo. We generated a macrophage-specific gp96-deficient mouse. Despite normal development and activation by interferon-γ, tumor necrosis factor-α, and interleukin-1β, the mutant macrophages failed to respond to ligands of both cell-surface and intracellular TLRs including TLR2, TLR4, TLR5, TLR7, and TLR9. Furthermore, we found that TLR4 and TLR9 preferentially interacted with a super-glycosylated gp96 species. The categorical loss of TLRs in gp96-deficient macrophages operationally created a conditional and cell-specific TLR null mouse. These mice were resistant to endotoxin shock but were highly susceptible to Listeria monocytogenes. Our results demonstrate that gp96 is the master chaperone for TLRs and that macrophages, but not other myeloid cells, are the dominant source of proinflammatory cytokines during endotoxemia and Listeria infections

    Oral Infection Drives a Distinct Population of Intestinal Resident Memory CD8+ T Cells with Enhanced Protective Function

    Get PDF
    SummaryThe intestinal mucosa promotes T cell responses that might be beneficial for effective mucosal vaccines. However, intestinal resident memory T (Trm) cell formation and function are poorly understood. We found that oral infection with Listeria monocytogenes induced a robust intestinal CD8 T cell response and blocking effector T cell migration showed that intestinal Trm cells were critical for secondary protection. Intestinal effector CD8 T cells were predominately composed of memory precursor effector cells (MPECs) that rapidly upregulated CD103, which was needed for T cell accumulation in the intestinal epithelium. CD103 expression, rapid MPEC formation, and maintenance in intestinal tissues were dependent on T cell intrinsic transforming growth factor β signals. Moreover, intestinal Trm cells generated after intranasal or intravenous infection were less robust and phenotypically distinct from Trm cells generated after oral infection, demonstrating the critical contribution of infection route for directing the generation of protective intestinal Trm cells

    CD4+ T Cell Regulation of CD25 Expression Controls Development of Short-Lived Effector CD8+ T Cells in Primary and Secondary Responses

    Get PDF
    Both CD4(+) T cell help and IL-2 have been postulated to program activated CD8(+) T cells for memory cell development. However, the linkage between these two signals has not been well elucidated. Here we have studied effector and memory CD8(+) T cell differentiation following infection with three pathogens (Listeria monocytogenes, vesicular stomatitis virus, and vaccinia virus) in the absence of both CD4(+) T cells and IL-2 signaling. We found that expression of CD25 on antigen-specific CD8(+) T cells peaked 3-4 days after initial priming and was dependent on CD4(+) T cell help, likely through a CD28:CD80/86 mediated pathway. CD4(+) T cell or CD25-deficiency led to normal early effector CD8(+) T cell differentiation, but a subsequent lack of accumulation of CD8(+) T cells resulting in overall decreased memory cell generation. Interestingly, in both primary and recall responses KLRG1(high) CD127(low) short-lived effector cells were drastically diminished in the absence of IL-2 signaling, although memory precursors remained intact. In contrast to previous reports, upon secondary antigen encounter CD25-deficient CD8(+) T cells were capable of undergoing robust expansion, but short-lived effector development was again impaired. Thus, these results demonstrated that CD4(+) T cell help and IL-2 signaling were linked via CD25 up-regulation, which controls the expansion and differentiation of antigen-specific effector CD8(+) T cells, rather than programming memory cell traits

    Differential branching fraction and angular analysis of the decay B0→K∗0μ+μ−

    Get PDF
    The angular distribution and differential branching fraction of the decay B 0→ K ∗0 μ + μ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions

    Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays

    Get PDF
    A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%
    corecore