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SUMMARY

The intestinal mucosa promotes T cell responses
that might be beneficial for effective mucosal vac-
cines. However, intestinal resident memory T (Trm)
cell formation and function are poorly understood.
We found that oral infection with Listeria monocyto-
genes induced a robust intestinal CD8 T cell
response and blocking effector T cell migration
showed that intestinal Trm cells were critical for sec-
ondary protection. Intestinal effector CD8 T cells
were predominately composed of memory precursor
effector cells (MPECs) that rapidly upregulated
CD103, which was needed for T cell accumulation
in the intestinal epithelium. CD103 expression, rapid
MPEC formation, and maintenance in intestinal tis-
sues were dependent on T cell intrinsic transforming
growth factor b signals. Moreover, intestinal Trm
cells generated after intranasal or intravenous infec-
tion were less robust and phenotypically distinct
from Trm cells generated after oral infection, demon-
strating the critical contribution of infection route for
directing the generation of protective intestinal Trm
cells.

INTRODUCTION

The intestinal mucosa sits as a dominant site for exposure to

potential microbial invaders, and these tissues promote the

ability to rapidly respond to insults by generating robust yet

regulated immunity. For most intracellular bacterial infections,

generating proper T cell responses is ultimately necessary for

the successful elimination of the pathogen. For Listeria monocy-

togenes (L. monocytogenes) infections, sterilizing immunity re-

quires a robust T cell response capable of providing common

effector functions such as interferon-g (IFN-g) production and

lysis of infected cells. After infection, induction of a protective

T cell response includes mobilization of effector cells to periph-

eral tissues resulting in elimination of any remaining bastions of

infection. Although these processes have been well defined

following intravenous (i.v.) infection, the pathogen-specific CD8

T cell response has not been well characterized following oral

infections.
Naive CD8 T cells specific for a pathogen are exceedingly rare

and predominately reside in secondary lymphoid tissues (Obar

et al., 2008; von Andrian and Mackay, 2000). Therefore, primary

CD8 T cell responses to infections require a lag period in order to

mount a robust response. Following successful elimination of a

pathogen, CD8 T cells establish distinct memory populations

with definedmigratory properties that are able to rapidly respond

to challenge (Schenkel et al., 2013; Gebhardt et al., 2011; Ariotti

et al., 2012). The developmental pathway a naive T cell follows to

progress tomemory has been widely studied. However, this pro-

cess has been complicated by the identification of several

distinct memory populations. One memory population resides

within lymphoid tissues as central memory T cells (Tcm),

whereas effector memory cells and an associated subset, resi-

dent memory T cells (Trm), reside predominately in peripheral

nonlymphoid tissues. For the most part, Tcm behave similarly

to naive T cells in terms of their lymphoid microanatomical loca-

tions and trafficking patterns. However, Trm are anatomically

positioned to immediately respond to antigen reexposure

without an appreciable delay in mediating protective effector

function (Schenkel et al., 2013; Gebhardt et al., 2009; Ariotti

et al., 2012). Although it is becoming clearer that Trm provide

superior protection in some infection models, both lymphoid

memory and Trm participate through distinct mechanisms (Geb-

hardt et al., 2009; Jiang et al., 2012; Mackay et al., 2012). Trm in

the reproductive tract have recently been shown to provide an

organizational framework to secondary immune responses by

enhancing the recruitment of innate cells through rapid IFN-g

production (Schenkel et al., 2013). However, the mechanisms

for generation and maintenance of Trm remain controversial

and might vary depending on infection route and tissue type. In

the case of the intestinal epithelium, a critical barrier tissue, a

clear picture explaining the events leading to Trm development

and establishment in response to oral infection has not emerged.

Here, we utilized an oral L. monocytogenes infection model to

recapitulate human infection and examine the generation of

intestinal Trm populations. Unexpectedly, we observed rapid

formation of an intestinal CD127+ KLRG1�CD8 T cell population

that resembled memory precursor effector cells (MPECs) fol-

lowing oral L. monocytogenes infection. These early mucosal

MPECs preferentially upregulated CD103 and survived long-

term, providing a means of identifying mucosal Trm precursors.

On the contrary, KLRG1+ CD127� CD8 T cells underwent

apoptosis in the intestinal epithelium consistent with short-lived

effector cells (SLECs). The establishment of a rapid resident

memory population was dependent on intrinsic TGF-b signals.
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Figure 1. Oral L. monocytogenes Infection Generates a Protective Mucosal T Cell Response

(A) The LLO91-specific CD8 T cell response was quantified in the blood after oral L. monocytogenes infection. Data are representative of at least two independent

experiments with at least four mice per group (mean and SEM).

(B) The LLO91-specific CD8 T cell response in tissues at 9 dpi mice. Representative contour plots are gated on CD8ab+ T cells. The numbers within plots

correspond to the percentage of cells within gates.

(C) Spleens were surgically removed (splenectomized) or mice underwent a sham surgery (control) and recovered for 2 weeks prior to oral infection.

LLO91-specific CD8 T cells were enumerated at 12 dpi. Data are representative of at least two independent experiments with at least three mice per group

(mean and SEM).

(D) Integrin a4b7 expression was determined on LLO91-specific CD8 T cells at 7 dpi. Data are representative of at least two independent experiments.

(E) Mice were orally immunized with 23 109 cfu L. monocytogenes and received 100 mg DATK-32 (anti-a4b7) or Rat IgG2A injections daily for the first 14 days and

every 5 days thereafter. Thirty days after primary infection, mice were rechallenged with 23 1010 cfu L. monocytogenes and the bacterial burden was determined

3 days following challenge infection. Data are pooled from two experiments with at least 12 mice per group (mean and SEM). See also Figure S1.
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Protective Intestinal Resident Memory T Cells
Contrary to peripheral lymphoid tissues where long-termmainte-

nance was independent of TGF-b signals, maintenance in intes-

tinal tissues was highly dependent on the ability to rapidly

generate MPECs. Moreover, CD103 expression by infiltrating

CD8 T cells promoted CD8 T cell accumulation in the epithelium,

rather than retention, after oral L. monocytogenes infection.

Route of infection influenced intestinal Trm as intranasal (i.n.)

infection, although mucosal in nature, failed to generate compa-

rable intestinal Trm responses. Thus, our findings identified

intestinal mucosa-specific mechanisms controlling protective

immunity within the intestine.

RESULTS

Protective CD8 T Cell Response to Murinized Oral
L. monocytogenes Infection
While i.v. and intraperitoneal (i.p.) L. monocytogenes infection

has been widely utilized in murine models, inherent differences

between mouse and human E-cadherin has hindered the effec-

tive examination of oral L. monocytogenes infection in mice

(Bonazzi et al., 2009). The bacterial surface protein internalin A

is responsible for invasion of human epithelial cells lining the in-
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testinal mucosa through interaction with its ligand, E-cadherin.

However, wild-type (WT) internalin A fails to recognize murine

E-cadherin, preventing invasion of murine intestinal epithelial

cells. Here, we utilized a recombinant L. monocytogenes con-

taining a mutation in the internalin A protein to facilitate invasion

of murine epithelial cells (Wollert et al., 2007; Bou Ghanem et al.,

2012). After oral L. monocytogenes infection, BALB/c mice

generated a rapid and robust expansion of endogenous anti-

gen-specific CD8 T cells responding to the immunodominant

Kd-restricted LLO91 epitope (Figures 1A–1C). This population

of LLO91-specific CD8 T cells was first detected in the blood at

6–7 dpi and rapidly reached peak response by 9 dpi. Removal

of the spleen did not impact the magnitude of the LLO91-specific

CD8 T cell response, suggesting that the spleenwas not required

as a site of T cell priming after oral infection (Figure 1C). More-

over, the integrin a4b7 was upregulated on LLO91-specific CD8

T cells located within the mesenteric lymph nodes (MLN) consis-

tent with APC-mediated priming in intestinal tissues (Figure 1D)

(Mora et al., 2003; Johansson-Lindbom et al., 2003). Together,

these data suggest organized intestinal lymphoid tissues such

as the MLN as the principal T cell priming site following oral

L. monocytogenes infection.



Figure 2. Memory T Cells Are Generated

Early in Intestinal Tissues after Oral

L. monocytogenes Infection

(A and B) MPEC (A) and SLEC (B) phenotype

was determined for LLO91-specific CD8 T cells

following oral L. monocytogenes infection. *p <

0.05, **p < 0.01, ***p < 0.001 (unpaired two-tailed

t test). p value indicators (*) are color matched to

the tissue compared to the spleen. Data are

representative of at least two independent experi-

ments with at least threemice per group (mean and

SEM). See also Figure S2.

(C) Representative contour plots gated on LLO91-

specific CD8 T cells depicting identification of

MPECs and SLECs at 12 dpi. The numbers within

plots correspond to the percentage of cells within

gates.

(D) Quantification of SLEC and MPEC LLO91-

specific CD8 T cells at 12 dpi following oral infec-

tion. **p < 0.01 (unpaired two-tailed t test). Data

are representative of at least two independent

experiments with at least three mice per group

(mean and SEM).
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Protective Intestinal Resident Memory T Cells
To determine the contribution of intestinal Trm to protection

following a challenge infection, mice were treated with DATK-

32 (anti-a4b7) throughout the primary response and into memory

homeostasis to prevent a4b7-dependent migration into the

intestinal mucosa (Hamann et al., 1994; Lefrançois et al.,

1999). After treatment, L. monocytogenes immune mice had

reduced LLO91-specific CD8 T cells in the intestinal epithelium

but not in the LP (see Figure S1 available online). No other

intestinal T cell populations were significantly perturbed (Fig-

ure S1). By using this approach, pathogen-specific CD8 Trm

cell numbers were reduced within the intestinal epithelium

while normal circulating CD8 memory populations were main-

tained in the peripheral lymphoid organs, including the

MLN (data not shown). Mice were then challenged with oral

L. monocytogenes infection, and bacterial burdens were

measured. Integrin a4b7 blockade resulted in elevated bacterial

burdens following challenge infection demonstrating the impor-

tance of establishing intestinal Trm populations for optimal pro-

tection against oral infections, particularly for those that reside

within the intestinal epithelium (Figure 1E).

Early MPEC Phenotype Cells Accumulate in the
Intestinal Mucosa
The intestinal tissues are distinct from lymphoid and other

nonlymphoid tissues with regard to T cell effector phenotype

and function (Casey et al., 2012; Masopust et al., 2010; Maso-

pust et al., 2006; Sheridan and Lefrançois, 2011; Masopust

et al., 2001; Pope et al., 2001). Generally, cells within intestinal

tissues express an activated phenotype (Masopust et al.,

2006). We sought to determine how the CD8 lineage is regu-
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lated within intestinal tissues after oral

L. monocytogenes infection. At 7 dpi,

T cells infiltrating the intestinal LP and

epithelium were heterogeneous with re-

gard to effector differentiation based on

CD127 and KLRG1 expression and were
similar in phenotype to cells in the spleen and MLN (Figures 2A

and 2B) (Joshi et al., 2007). In the spleen, antigen-specific CD8

T cells were composed of �50% KLRG1+ and �20% CD127+

cells up to at least day 12 dpi (Figure 2C). In contrast, by

12 dpi, nearly the entire intestinal LLO91-specific CD8 T cell

population was represented by cells with an MPEC phenotype

(Figure 2). This accelerated memory phenotype formation was

also evident by heightenedmultifunctionality with regard to cyto-

kine production (Figure S2). However, in the spleen and lung,

LLO91-specific CD8 T cells maintained a prolonged SLEC

phenotype and were less multifunctional than intestinal LLO91-

specific CD8 T cells (Figures 2B and 2D; Figure S2).

Prolonged expression of KLRG1 in the spleen suggested that

preferential migration of effector subsets to the intestinal mu-

cosa was not the underlying reason for the rapid accumulation

of MPEC phenotype cells. In addition, a4b7 was comparably ex-

pressed by SLEC and MPEC phenotype cells (Figure S3A). To

test whether migration of distinct subsets contributed to acceler-

ated memory formation in intestinal tissues, DATK-32 was

administered daily between 7 and 11 dpi, and the intestinal tis-

sues were harvested 1 day later to examine LLO91-specific

CD8 T cells and their differentiation status. Transient a4b7
blockade reduced the size of the LP and intraepithelial lympho-

cyte (IEL) LLO91-specific CD8 T cell populations indicating that

migration of effector T cells during this time period contributed

to accumulation at these sites (Figures 3A and 3B). Despite the

reduced accumulation of LLO91-specific CD8 T cells within in-

testinal tissues, rapid conversion to an MPEC phenotype was

unaltered (Figures 3C and 3D). In addition, daily DATK-32 treat-

ment or anti-CCR9 administration throughout primary infection
757, May 15, 2014 ª2014 Elsevier Inc. 749



Figure 3. In Situ Events Regulate MPEC Accumulation Within Intes-

tinal Tissues

(A–D) BALB/cmice were treatedwith 100 mg DATK-32 or Rat IgG2a daily from 7

to 11 dpi. The LP and IEL were harvested at 12 dpi and LLO91-specific CD8

T cells were identified (A and B) and analyzed for CD127 and KLRG1

expression (C and D). Representative contour plots gated on CD8b+ T cells (A)

or LLO91-specific CD8 T cells (C) are shown. The numbers within plots

correspond to the percentage of cells within gates. NS, not significant; *p %

0.05 (unpaired two-tailed t test). Data represents five mice per group (mean

and SEM). See also Figure S3.

(E) Naive BALB/c mice were challenged with 2 3 1010 cfu L. monocytogenes

and indicated tissues were harvested 4 days following infection. Alternatively,

mice orally immunized with 2 3 109 cfu L. monocytogenes were challenged

with 2 3 1010 cfu L. monocytogenes 15 days following primary infection and

indicated tissues were harvested 4 days following secondary infection. Both

groups were treated with 100 mg DATK-32 daily following the challenge

infection. **p < 0.01 (Mann-Whitney two-tailed test). Data represents at least

six mice per group and is representative of two independent experiments.

Immunity

Protective Intestinal Resident Memory T Cells
led to reduced LLO91-specific CD8 T cells in intestinal tissues at

the peak of the T cell response (Figure S3B). Even under these

conditions, rapid development of a MPEC phenotype population

was not hindered (Figure S3C). Taken together, these data sug-

gest that rapid memory accumulation within intestinal tissues
750 Immunity 40, 747–757, May 15, 2014 ª2014 Elsevier Inc.
occurred via in situ regulation and not through differential migra-

tion of distinct T cell subsets. To determine whether rapid

accumulation of intestinal MPECs occurred via proliferation or

apoptosis, we examined bromodeoxyuridine (BrdU) incorpora-

tion and Annexin V reactivity, respectively. Indeed, rapid MPEC

phenotype formation appeared to be predominately due to the

increased apoptosis of SLEC phenotype cells and not the differ-

ential proliferation of MPEC phenotype cells in intestinal tissues

(Figures S3D and S3E). Together, these data suggest that rapid

memory development in intestinal tissues is regulated in situ by

preferential SLEC apoptosis.

We also tested whether early memory cells were capable

of providing protection and reducing dissemination of bacteria

in the absence of newly infiltrating intestinal T cells. Naive

or L. monocytogenes-immune mice infected 15 days previ-

ously were treated with DATK-32 daily following secondary

L. monocytogenes challenge, and bacterial burden was quanti-

fied in the spleen, liver, and MLN after challenge infection. Bac-

teria were nearly undetectable in the MLN and spleen, and the

bacterial load in the liver was greatly reduced (Figure 3E).

Thus, even very early after primary infection, protective immunity

had been established in the intestinal mucosa.

MPECPhenotype Cells Preferentially Express CD69 and
CD103 in Intestinal Tissues
A subset of LP CD8 T cells and nearly all IELs express CD69 and

the aE integrin CD103, both of which are upregulated as cells

enter the mucosa (Masopust et al., 2006; Klonowski et al.,

2004; Ericsson et al., 2004). As circulating memory CD8 T cells

provide minimal input into the intestinal memory pool (Klonowski

et al., 2004), these CD103+ memory CD8 T cells are considered

resident (Gebhardt et al., 2009;Wakim et al., 2010;Mackay et al.,

2012; Klonowski et al., 2004; Jiang et al., 2012; Gebhardt et al.,

2011). Current evidence suggests that CD103 is involved in

retention of T cells in the epithelium through interactions with

E-cadherin (El-Asady et al., 2005; Lee et al., 2011; Casey et al.,

2012). We examined CD103 and CD69 expression on effector

subsets in the mucosa 12 days after oral L. monocytogenes

infection. Splenic effector cells of either MPEC or SLEC pheno-

types lacked expression of CD103 and CD69, whereas a subset

of MPEC phenotype cells in the MLN expressed CD103 (Fig-

ure 4). CD103 was exclusively expressed by MPEC phenotype

cells in the LP and IEL compartments and was absent from

SLEC phenotype cells (Figure 4). CD69 was also preferentially

expressed by MPEC phenotype cells, with only low amounts ex-

pressed by SLEC phenotype cells. This rapid Trm development

was independent of infectious dose. Mice receiving 10- or 100-

fold less L. monocytogenes infection demonstrated a dose-

dependent expansion of LLO91-specific CD8 T cells in intestinal

tissues (Figure S4A). However, the development of an MPEC

phenotype population and CD103 expression at 15 dpi occurred

independently of infectious dose (Figure S4B and S4C). These

results identify CD103 and CD69 coexpression as a hallmark of

MPEC identification in the intestinal mucosa, which further sup-

ports the concept that Trm are descendants of early infiltrating

MPECs.

As CD8 T cells activated at remote sites traffic to the intestinal

mucosa (Masopust et al., 2004), we wished to determine

whether local priming was required to drive accelerated memory



Figure 4. CD103 Expression Identifies

Mucosal Memory Precursor CD8 T Cells

(A) BALB/c mice were orally infected with

L. monocytogenes and LLO91-specific CD8 T cells

from the indicated tissues were analyzed at 12 dpi.

Representative contour plots gated on either

LLO91-specific CD8 T cells with anMPEC (top row)

or SLEC (bottom row) phenotypes demonstrate

CD103 and CD69 staining. Numbers in plots

correspond to the percentage of cells within gated

quadrants.

(B) Graphical quantification of the data presented

in (A). *p < 0.05, ***p < 0.001 (unpaired two-tailed

t test). Data are representative of at least two in-

dependent experiments with five mice per group

(mean and SEM). See also Figure S4.
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development in the intestinal mucosa. Just as in BALB/c mice,

early accumulation of MPEC phenotype cells was evident in

the intestinal mucosa of B6 mice after oral infection (Figure S5).

Therefore, we performed i.n. influenza virus infection of B6 mice

and tracked the resulting effectors in the intestinal mucosa. After

i.n. infection with an influenza virus expressing ovalbumin, robust

expansion of ova-specific CD8 T cells occurred and these cells

migrated to intestinal tissues (Figure 5A). In contrast to the

events following oral L. monocytogenes infection, the effector

cells were largely made up of SLECs and early effector cells

(EEC; KLRG1�CD127�) (Figure 5B). This lack of MPEC accumu-

lation in the intestinal tissues resulted in poor development of

long-lived memory cells, and ova-specific CD8 T cells were

barely detectable in the intestinal tissues at 25 dpi (Figure 5A).

Despite the limited presence of MPECs in intestinal tissues

following influenza virus infection, CD103 expression remained

limited to MPEC phenotype cells (Figure 5B). As i.n. influenza

virus infection failed to generate readily identifiable memory

populations in intestinal tissues, we examined the intestinal

compartment of mice infected with i.n. L. monocytogenes

30 days previously. Memory LLO91-specific CD8 T cells were

readily identified in the LP and IEL, though to a lesser degree

than oral infection (Figure 5C). Moreover, these cells failed to fully

convert to a memory phenotype and only a small proportion ex-

pressed CD69 and CD103 (Figure 5D compared to Figures 2A

and 4B). These data demonstrate that the route of priming has

a dramatic impact on the process of local Trm development.

CD103 Regulates Accumulation but Not Retention
within the Intestinal Epithelium
Because oral infection induced Trm that appeared distinct from

intestinal Trm primed in nonintestinal tissues, we examined the

role of CD103 on CD8 T cells after oral infection. Itgae�/�
Immunity 40, 747–
(CD103 deficient) mice developed a

normal T cell response within the epithe-

lium after i.v. (Lefrançois et al., 1999)

and oral infection, and these cells were

maintained into the memory phase (Fig-

ure S6). These findings suggest that a

role for CD103 expression in the accu-

mulation of CD8 T cells in intestinal com-

partments is not absolute. However,
accumulation within the intestine might be a combination of

multiple biologic processes including migration, proliferation,

survival, and/or retention. Previous studies have cotransferred

Itgae�/� and CD103-sufficient (B6) T cells into naive recipients

prior to infection to demonstrate a role for CD103 in retention

of T cells in epithelial layers. By using this approach, Itgae�/�

CD8 T cells are not readily maintained within the epithelium of

peripheral tissues (Lee et al., 2011; Casey et al., 2012; Mackay

et al., 2013). We employed this cotransfer system to test the

role of CD103 expression after oral L. monocytogenes infection.

At the peak of the T cell response, comparable ratios of B6 and

Itgae�/� OT-I cells were present in the MLN and LP. In contrast,

OT-I cells in the epithelium were heavily skewed toward B6 OT-I

cells suggesting that CD103 promotes T cell accumulation in the

epithelium (Figure 6A). This ratio remained unchanged at 29 dpi

suggesting that CD103 was not required for further retention in

the intestinal epithelium after initial establishment of the T cell

population (Figure 6A). The preferential accumulation of B6

OT-I in the epithelium was apparent as early as 7 dpi but was

further exaggerated at 9 dpi, suggesting that CD103 provides

a selective advantage for accumulation in the epithelium (Fig-

ure 6B). This selective advantage is likely due to differential

migration into the epithelium because total antigen-specific

CD8 T cell numbers in the LP and IEL declined after 9 dpi yet

the number of CD103+ antigen-specific CD8 T cells remained

constant (data not shown). Itgae�/� OT-I cells were maintained

at similar proportions for at least 113 dpi with no further reduc-

tions (Figure 6B). Together, these data suggest that CD103

does not regulate retention of pathogen-specific CD8 T cells in

the intestinal epithelium after oral infection (Figures 6A and 6B).

These findings were further corroborated by examination of

luminal CD8 T cells, where ratios of B6 and Itgae�/� OT-I cells

were identical to those in the epithelial layer (Figure 6A).
757, May 15, 2014 ª2014 Elsevier Inc. 751



Figure 5. Intranasal Infection Leads to

Distinct Trm Populations in the Intestine

(A) C57Bl/6 mice were infected with i.n. influenza

virus expressing ovalbumin and the LP and IEL of

the small intestine were harvested 10 and 25 days

later to identify ova-specific CD8a+ TCRb+ cells.

NS, not significant; **p < 0.01 (unpaired two-tailed

t test). See also Figure S5.

(B) Effector subset phenotype was determined for

ova-specific CD8 T cells in the LP and IEL at 10 dpi

(EEC - CD127� KLRG1�). CD103 expression was

determined on ova-specific effector subsets in the

LP and IEL at 10 dpi. NS, not significant; *p < 0.05,

**p < 0.01, ***p < 0.001 (unpaired two-tailed t test).

(C) BALB/c mice were infected with i.n. or oral

L. monocytogenes and the LP and IEL of the small

intestine were harvested 30–32 days later. Cells

are gated on CD8a+ TCRb+ cells.

(D) LLO91-specific CD8 T cells from i.n. infection

were examined for MPEC phenotype and CD103

and CD69 coexpression.

All data are representative of at least two inde-

pendent experiments with three to four mice per

group (mean and SEM).
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Protective Intestinal Resident Memory T Cells
Preferential accumulation of Itgae�/� OT-I cells should occur in

the lumen if CD103 was required for retention. In addition,

CD103 expression appeared to have no effect on the rapid accu-

mulation of memory in the epithelium and lumen (Figures 6C and

6D). This would suggest that changes in survival or proliferation

of Itgae�/� cells did not contribute to the accumulation of B6

T cells in the epithelium as CD103 expression is limited to cells

with an MPEC phenotype and alterations in proliferation or sur-

vival should modify the proportion of MPEC phenotype cells.

Overall, these data demonstrate that CD103 promotes accumu-

lation of CD8 T cells in the epithelium but was not required for

rapid MPEC development or long-term retention of Trm in the

epithelium.

TGF-b Drives Rapid Memory Formation and Subsequent
Maintenance of Trm Cells
TGF-b has numerous functions that might contribute to the

establishment of Trm populations. TGF-b signaling is required

for upregulation of CD103 (El-Asady et al., 2005) and through

this action subsequently involved in retention of Trm in a number

of peripheral tissues (Casey et al., 2012; Lee et al., 2011; Mackay

et al., 2013). Under certain conditions TGF-bmight also regulate

expression of the integrin a4b7 and thereby influence intestinal

homing (Zhang and Bevan, 2013). Because CD103 expression

was not required for T cell retention within the intestinal epithe-

lium (Figure 6) and a4b7 expression was TGF-b-independent

(Figure S7A), we asked whether impaired TGF-b signaling regu-

lated intestinal Trm development after oral L. monocytogenes

infection. We utilized a system in which TGF-b receptor II

(TGF-bRII) is absent and TGF-b signaling is completely

abrogated (Zhang and Bevan, 2012; Zhang and Bevan, 2013;

Mackay et al., 2013). Thus, we cotransferred equal numbers of

CD44lo CD8 T cells from Tgfbr2fl/fl distal promoter (d) Lck-cre

(TGFbRII-deficient) CD45.1 OT-I and Tgfbr2fl/fl (WT) CD45.1/.2
752 Immunity 40, 747–757, May 15, 2014 ª2014 Elsevier Inc.
OT-I into CD45.2 B6 mice. At the peak of the T cell response,

the overall responses and the ratios of TGF-bRII-deficient to

WT OT-I cells were comparable in peripheral lymphoid tissues

and intestinal tissues demonstrating that the magnitude of the

T cell response is unaffected by loss of TGF-b signals (Figures

7A and 7B). The overall responses and the ratios of TGF-bRII-

deficient to WT OT-I cells remained comparable in lymphoid tis-

sues as the T cell response progressed into the memory phase.

Contrary to these findings, TGF-bRII-deficient T cells were not

maintained in the intestinal LP and IEL as TGF-bRII-deficient

cells were barely detectable at 16 and 32 dpi in both tissues (Fig-

ures 7A and 7B). When TGF-b signaling was ablated specifically

in responding OT-I T cells, CD103 upregulation did not occur at

any time after infection and CD69 upregulation was initially

blunted (Figure 7C; Figure S7B). After the peak of the T cell

response, CD69 expression on TGF-bRII-deficient T cells was

comparable to or greater than WT T cells among CD103�

T cells suggesting that CD69 expression among CD103

nonexpressing cells might be TGF-b-independent (Figure S7B).

However, it is unclear whether CD69+ CD103� T cells are a

distinct population from or precursors to CD69+ CD103+

T cells. Because CD103 expression did not mediate T cell reten-

tion in this model and a comparable loss of CD8 memory T cells

was observed in the intestinal LP, a tissue where CD103 is not

required for retention in any model, it is unlikely that this rapid

decline was related to the inability for intestinal Trm to upregulate

CD103. Collectively, these data demonstrated that CD103

expression and Trm generation is TGF-b-dependent within intes-

tinal tissues after oral L. monocytogenes infection.

TGF-b is also thought to be important for regulation of CD8

T cell differentiation. TGF-b promotes SLEC apoptosis during

effector responses in lymphoid tissues and thereby regulates

the ratio of SLECs versus MPECs (Sanjabi et al., 2009). Whether

similar effects are exerted in intestinal tissues remains unclear.



Figure 6. CD103 Expression Provides a

Selective Advantage for Epithelial Accumu-

lation but Is Not Required for Retention

Equal numbers of B6 (CD45.1/.2) and Itgae�/�

(CD45.1) OT-I T cells were mixed and transferred

into naive B6 mice (CD45.2) prior to infection.

(A) OT-I T cells from B6 and Itgae�/� donors were

quantified at 9 and 29 dpi with congenicmarkers in

the spleen, MLN, LP, IEL, and lumen. OT-I IELs are

presented as a ratio of Itgae�/� to B6 OT-I T cells

and normalized to the LP ratio. NS, not significant;

*p < 0.05, ***p < 0.001 (left panels, paired two-

tailed t test; right panel, unpaired two-tailed t test).

See also Figure S6.

(B) Mice orally infected with L. monocytogenes

were examined at 7, 9, and 113 dpi and presented

as in (A). NS, not significant; **p < 0.005 (unpaired

two-tailed t test). Data from (A) and (B) are repre-

sentative of three similar experiments with at least

four mice per group (mean and SEM).

(C and D) B6 or Itgae�/� OT-I cells from the in-

testinal epithelium (C) and lumen (D) at 9 dpi were

examined for CD127 and KLRG1 expression.

Representative contour plots are shown. (C) NS,

not significant; **p < 0.005, ***p < 0.001 (unpaired

two-tailed t test). Data are representative of three

similar experiments with at least four mice per

group (mean and SEM). (D) Data represents the

pooled luminal contents of at least four mice per

group.
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To test this, we determined whether TGF-b signaling regulated

early accumulation of MPECs in intestinal tissues. Indeed,

whereas a modest increase in SLECs was observed in splenic

TGF-bRII-deficient cells, TGF-bRII-deficient cells in the IEL

lacked the rapid appearance of MPECs observed in WT T cells

and did not form memory populations until 16 to 32 dpi (Fig-

ure 7D). Approximately 70% of TGF-bRII-deficient cells ex-

pressed a SLEC phenotype in the intestinal epithelium at 9 dpi.

This observation is consistent with a role for TGF-b in promoting

the rapid apoptosis of SLECs in the intestinal epithelium. How-

ever, these data would suggest that the inability to become

MPECs early in the response impairs the maintenance of this

population. Moreover, IEL T cells that could not receive TGF-b

signals phenocopy WT T cells in the spleen, further demon-

strating that TGF-b is critical for the rapid accumulation of

MPECs within intestinal tissues.

DISCUSSION

The basis of our understanding of T cell memory has relied pre-

dominantly on the role ofmemory T cell populations in secondary

lymphoid organs. However, this centralized view of T cell mem-

ory has progressed toward recent studies highlighting the signif-

icance of memory T cells residing in peripheral tissues (Wakim

et al., 2008; Gebhardt et al., 2009; Shin and Iwasaki, 2012; Jiang

et al., 2012; Masopust et al., 2010). The behavior of these cell

populations is distinct from their circulating counterparts and

new therapeutic avenues might target enhancing long-lived resi-

dent memory populations for rational vaccine design. These

populations appear to provide all the advantages of memory

T cells found in secondary lymphoid organs with the added

benefit of being anatomically positioned at the barriers where
initial pathogenic insults occur. In this manner, Trm generated af-

ter oral L. monocytogenes challenge are ideally suited to rapidly

respond to future exposures thereby limiting associated pathol-

ogies. Blockade of the a4b7 integrin after L. monocytogenes

infection resulted in the establishment of a reduced Trm popula-

tionwithin the intestinal epithelium. Thesemice demonstrated an

enhanced susceptibility to bacterial dissemination following a

challenge infection. Indeed, localized i.n. influenza infection

failed to induce efficient homing of Trm to the intestinal epithe-

lium. However, a small window of T cell migration resulted in effi-

cient infiltration of effector cell subsets into the intestinal LP.

Despite this, intestinal flu-specific CD8 T cells failed to rapidly

develop a MPEC population within the intestinal tissues and

were poorly maintained, suggesting that i.n. routes of infection

are poor inducers of intestinal residency. This was confirmed

with an i.n. L. monocytogenes infection that induced a robust

LP but a diminished IEL memory population. Despite their main-

tenance in the intestine, they did not bear resemblance to orally

induced Trm populations. Therefore, approaches aimed at

providing valuable protection to intestinal pathogens might uti-

lize oral vaccination strategies to boost intestinal epithelial resi-

dent memory populations. In a similar manner, skin infections

induce strong protective Trm responses in the skin (Jiang

et al., 2012; Gebhardt et al., 2009) and i.n. infections induce

robust Trm in the lungs (Lee et al., 2011).

It remains unclear where Trm development interfaces with our

classic understanding of T cell memory generation. Even prior to

Trm inclusion into this paradigm, multiple models of T cell mem-

ory could encompass the observations associated with memory

T cell formation (Lefrançois and Masopust, 2009). Because in-

testinal Trm are not populated from circulating memory T cells,

it is reasonable to propose that they are generated from T cells
Immunity 40, 747–757, May 15, 2014 ª2014 Elsevier Inc. 753



Figure 7. TGFb Regulates Rapid MPEC and Trm Generation and Is Required for Intestinal Trm Maintenance

Equal numbers of CD44lo CD8 T cells from Tgfbr2fl/fl distal promoter (d) Lck-cre (KO) CD45.1 OT-I and Tgfbr2fl/fl (WT) CD45.1/.2 OT-I were cotransferred into

CD45.2 B6 mice and infected 1 day later.

(A) Representative dot plots are gated on donor cells after oral L. monocytogenes infection. The numbers within plots correspond to the percentage of cells within

gates.

(B) Donor-derived cells were quantified in the indicated tissues after oral L. monocytogenes infection. Absolute number and ratios of donor cells are depicted

graphically with mean and SEM of four mice per group. See also Figure S7.

(C and D) Donor-derived OT-I T cells were analyzed for CD69 and CD103 (C) and CD127 and KLRG1 (D) expression in the indicated tissues. Representative

contour plots are gated on donor OT-I T cells as indicated at 9 dpi. The numbers within plots correspond to the percentage of cells within gates. Graphs depict the

mean and SEM of four mice per group. See also Figure S7.
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that initially seed the site of infection during the primary response

when intestinal homing receptors are expressed (Klonowski

et al., 2004; Masopust et al., 2010). Surprisingly, little attention
754 Immunity 40, 747–757, May 15, 2014 ª2014 Elsevier Inc.
has focused on CD8 T cell differentiation into resident memory

T cells within these peripheral tissues. On the basis of other

models, it is reasonable to speculate that memory development
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in intestinal tissues would occur gradually as it occurs in the

lymphoid compartments. On the contrary, these data clearly

demonstrated an extremely rapid development of memory

T cells in intestinal tissues after oral L. monocytogenes infection.

This rapid memory formation is driven by TGF-b-dependent

in situ events. The accelerated memory formation was associ-

ated with preferential expression of CD103 and CD69 byMPECs

but not by effector subsets expressing KLRG1. Clearly, both

SLECs and MPECs received signals through TGF-b. In the

case of SLECs, these signals interfered with their survival,

whereas TGF-b signals instructed MPECs to upregulate CD103

without impacting their survival. It is unclear why CD103

expression does not occur in SLECs even though they received

instructive signals through TGF-b. Similarly, cytokines like inter-

leukin-15 (IL-15) and IL-7 might promote the maintenance of

MPECs in intestinal tissues despite receiving TGF-b signals.

Both KLRG1 and CD103 can recognize and bind to E-cadherin

(Gründemann et al., 2006; Cepek et al., 1994) providing a poten-

tial mechanism for early E-cadherin interactions andmigration of

SLECs into the epithelium. Additionally, E-cadherin expression

on Trm has been shown to regulate Trm accumulation in the sali-

vary gland, providing a potential mechanism for retention in

epithelial layers in the absence of CD103 (Hofmann and Pircher,

2011). CD69 is also important in driving T cell migration to the

lung and skin but has not been evaluated in this model (Lee

et al., 2011; Mackay et al., 2013). CD8 T cells in the intestinal

LP that lack CD103 in a competitive transfer model still express

CD69 yet migrate into the epithelium to a lesser degree. This

suggests that CD69 is not providing a selective migratory advan-

tage or that any advantage awarded through CD69 expression is

mitigated in the absence of CD103. However, because both LP

and IEL subsets express high amounts of CD69 and it is reex-

pressed after migration into the LP, it is more likely that the

CD69-S1P1 axis is regulating Trm retention within the LP and

IEL after establishment (Shiow et al., 2006; Skon et al., 2013).

Our studies demonstrate that Trm rapidly arise from MPECs ex-

pressing CD103 and CD69, which seed intestinal tissues early

after oral infection. CD103 was involved in the accumulation of

CD8 T cells into the intestinal epithelium, but not in long-term

retention of mucosal memory T cells. Moreover, T cells that

cannot respond to TGF-b are incapable of being maintained in

the lamina propria or epithelium of the intestine, even though

normal numbers of antigen-specific T cells are maintained in

other peripheral tissues. Collectively, these results suggest that

the inability of TGF-bRII-deficient T cells to be maintained in in-

testinal tissues is independent of TGF-b effects on CD103

expression and a result of the inability to form early MPEC pop-

ulations within intestinal tissues.
EXPERIMENTAL PROCEDURES

Mice

BALB/cJ and C57Bl/6J mice were purchased from The Jackson Laboratory.

B6-Ly5.2/Cr mice were purchased from Charles River Laboratories. Itgae�/�,
Itgae�/� Rag1�/� OT-I, C57Bl/6, and Rag1�/� OT-I mice with mixed congenic

backgrounds are maintained in house. Tgfbr2fl/fl dLck-cre OT-I and Tgfbr2fl/fl

OT-I mice (Zhang and Bevan, 2012) were obtained fromUniversity ofWashing-

ton. All mice were maintained in specific-pathogen-free conditions and 8- to

14-week-old, age-matched mice were used for experiments. All animal exper-

iments were conducted in accordance with the University of Connecticut
Health Center Institutional Animal Care and Use Committee and National Insti-

tutes of Health guidelines.

Bacteria, Virus, and Infections

L. monocytogenes strain EGDe carrying a recombinant internalin A with a mu-

tation in S192N and Y369S (InlAM) has been described previously (Wollert

et al., 2007). All mice were food and water deprived for�4 hr prior to infection,

housed individually with minimal bedding, and given an approximately 0.5 cm3

piece of bread inoculated with 2 3 109 colony-forming units (cfu) of

L. monocytogenes in PBS. In experiments designed to quantify bacterial

burden, a recombinant L. monocytogenes InlAM strain 10403s, which is natu-

rally streptomycin resistant, was used for primary (23 109 cfu) and secondary

(2 3 1010 cfu) infections. For i.n. (i.n.) L. monocytogenes infection, mice were

anesthetized by i.p. injection with 2,2,2-tribromoethanol (Avertin) before infec-

tion with L. monocytogenes InlAM strain EGDe. For oral L. monocytogenes

infection of B6 mice, infection was performed with L. monocytogenes

InlAM strain 10403s expressing a truncated form of ovalbumin. For i.v.

L. monocytogenes infection of B6mice, 13 103 cfu of L. monocytogenes InlAM

strain 10403s expressing a truncated form of ovalbumin was injected into the

tail vein. For influenza virus infection, mice were anesthetized prior to infection

with 103 PFU of WSN-OVAI (Lee et al., 2011).

Tissue Preparation

Single-cell suspensions were prepared fromMLN, spleen, lung, LP, and IEL as

previously described (Sheridan and Lefrancois, 2012; Lee et al., 2011). Briefly,

MLNs, spleen, and lung were digested with 100 U/ml of collagenase prior to

mechanical dissociation through a 70 mm filter. Small intestines were removed

and Peyer’s patches were dissected away prior to processing. IEL, LP, and

lung lymphocytes were isolated on Percoll.

Flow Cytometry

Cells were stained at 4�C in the dark with combinations of directly fluoro-

chrome-conjugated antibodies purchased from BioLegend or eBiosciences.

MHC class I tetramer staining was performed at ambient temperature for

1 hr. Cells were then fixed for 20 min with 2% paraformaldehyde. Tetramer

enrichment was used in some experiments (Obar et al., 2008). Acquisition

was performed on a LSR II flow cytometer (BD) and data were analyzed with

FACSDiva (BD).

In Vitro Stimulations

Single-cell suspensions were incubated with brefeldin A in RPMI 1640 supple-

mented with 10% fetal bovine serum, L-glutamine, gentamycin, penicillin, and

streptomycin. Cells were stimulated with 1 mg/ml of LLO91–99 for 5 hr at 37�C
and 5% CO2. Cells were stained intracellularly with antibodies specific for

IFN-g and tumor necrosis factor alpha.

Adoptive Transfer

Equal numbers ofWTOT-I andOT-I (either Itgae�/�Rag1�/� or Tgfbr2fl/fl dLck-

cre) splenocytes were mixed and cotransferred into naive B6 mice prior to

infection. A total of 4 3 103 cells were transferred. Congenic markers were

used to distinguish donors and recipients. For TGF-bRII experiments CD44lo

CD8a+ cells were sorted for transfer.

In Vivo Antibody Treatments

Mice were given i.p. injections with 100–200 mg anti-a4b7 (Bio X Cell; DATK32),

200 mg anti-CCR9 (Biolegend; 9B1), or 100–200 mg Rat immunoglobulin G2A

(IgG2A) (Bio X Cell; 2A3).

Proliferation and Apoptosis

Mice were given 100 mg BrdU via intraperitoneal injection. Incorporation of

BrdU was determined per manufacturer’s guidelines (BD). Annexin V reactivity

was performed per manufacturer’s instructions (BD).

Quantification of Bacterial Burden

All tissues were mechanically disassociated through a 70 mm filter and incu-

bated with 1% saponin for 1 hr at 4�C. Tissue homogenates were plated on

Brain Heart Infusion agar plates supplemented with 50 mg/mL streptomycin.

Colonies were counted after 2 days at 37�C.
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Immunity

Protective Intestinal Resident Memory T Cells
Statistical Analysis

All statistical analyses were performed with Prism 5 (GraphPad) software.
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