26 research outputs found

    Cross field current instabilites in a vlasov plasma

    Get PDF

    DeVille\u27s Orthodoxy and the Roman Papacy

    Full text link

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    A student's guide to dimensional analysis

    No full text
    This introduction to dimensional analysis covers the methods, history and formalisation of the field, and provides physics and engineering applications. Covering topics from mechanics, hydro- and electrodynamics to thermal and quantum physics, it illustrates the possibilities and limitations of dimensional analysis. Introducing basic physics and fluid engineering topics through the mathematical methods of dimensional analysis, this book is perfect for students in physics, engineering and mathematics. Explaining potentially unfamiliar concepts such as viscosity and diffusivity, the text includes worked examples and end-of-chapter problems with answers provided in an accompanying appendix, which help make it ideal for self-study. Long-standing methodological problems arising in popular presentations of dimensional analysis are also identified and solved, making the book a useful text for advanced students and professionals

    Thermodynamic weirdness: from Fahrenheit to Clausius

    No full text
    Students of physics, chemistry, and engineering are taught classical thermodynamics through its methods―a “problems first” approach that neglects the subject's concepts and intellectual structure. In Thermodynamic Weirdness, Don Lemons fills this gap, offering a nonmathematical account of the ideas of classical thermodynamics in all its non-Newtonian “weirdness.” By emphasizing the ideas and their relationship to one another, Lemons reveals the simplicity and coherence of classical thermodynamics. Lemons presents concepts in an order that is both chronological and logical, mapping the rise and fall of ideas in such a way that the ideas that were abandoned illuminate the ideas that took their place. Selections from primary sources, including writings by Daniel Fahrenheit, Antoine Lavoisier, James Joule, and others, appear at the end of most chapters. Lemons covers the invention of temperature; heat as a form of motion or as a material fluid; Carnot's analysis of heat engines; William Thomson (later Lord Kelvin) and his two definitions of absolute temperature; and energy as the mechanical equivalent of heat. He explains early versions of the first and second laws of thermodynamics; entropy and the law of entropy non-decrease; the differing views of Lord Kelvin and Rudolf Clausius on the fate of the universe; the zeroth and third laws of thermodynamics; and Einstein's assessment of classical thermodynamics as “the only physical theory of universal content which I am convinced will never be overthrown.
    corecore