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ASSOCIATED WITH HIGH-CURRENT rf LINACS 

by 

R. J. Faehl, Don S. Lemons, and Lester E. Thode 

ABSTRACT 

The limitations on high-current rf linacs due 
to gap sparking, cavity loading, and the beam 
breakup instability are studied. It appears 
possible to achieve cavity accelerating gradients 
as high as 35 MV/m without sparking. Furthermore, 
a linear analysis, as well as self-consistent 
particle simulations of a multipulsed 10 kA beam, 
indicates that only a negligible small fraction of 
energy is radiated into nonfundamental cavity 
modes. Finally, the beam breakup instability is 
analyzed and found to be able to magnify initial 
radial perturbations by a factor of no more than 
about 20 during the beam transit time through a 
1 GeV accelerator. 

I. INTRODUCTION 

When a standing-wave radio-frequency (rf) linac was first suggested as an 

alternative to an induction linac for generating a high-current, relativistic 

electron beam, a number of objections were raised. First, the high accelerat¬ 

ing gradients necessary were not possible because of sparking limitations. 

Second, beam driven cavity radiation would clearly be catastrophic because the 

energy source for such radiation is scaled like the square of the charge in a 

micropulse. Finally, because of the high cavity Q, the nonaxisymmetric modes 

would rapidly deflect the beam to the drift tube wall. We have considered all 

of these issues in the present report, and we find that none of these objections 

are valid. Taking into account our previous calculations and particle-in-cell 

simulations of injection into the first cavity coupled with the present 

analysis, a high-current standing-wave rf linac appears possible. 



In Sec. II several criteria on maximum accelerating gradients and asso¬ 

ciated sparking limits are discussed. In the 50- to 200-MHz range, accelerating 

gradients of 21 to 35 MV/m appear possible for well-prepared systems. 

The question of axisymmetric beam loading is addressed in Sec. Ill, both 

analytically and through particle-in-cell plasma simulation techniques. For 

multipulse trains, beam driven radiation into unwanted modes is found to be 

small, provided the cavity dimensions and micropulse width are chosen to avoid 

higher order modes with frequencies that are exact odd integer multiples of the 

fundamental. Radiation into transverse electric (TE) modes is also small. 

Finally, the question of beam breakup instability is addressed in Sec. IV. 

Because of the high accelerating gradients, the beam becomes stiff quickly and 

beam deflections are found to be quite small. We do not mean to imply that this 

type of instability can be ignored, but it does appear to be controllable and is 

certainly not catastrophic. 

II. ACCELERATING GRADIENTS AND SPARKING LIMITS 

One of the advantages of standing-wave rf over induction linacs is their 

potential for high accelerating gradients. Gradients in an rf linac are limited 

only by sparking effects and cavity Q considerations. 

Sparking can be caused by charge particle multipacting whenever 

T > l/2f , (1) 

where T is the particle transit time and f is the frequency of the fundamental 

accelerating frequency. In terms of the peak electric field E , this limit is 

E = md(27if)2/2e , (2) 

where d is the cavity length and m and e are respectively the electron mass and 

charge. 

Electron multipacting can be overcome relatively easily by rapidly increas-
2 

ing the field over the limit of Eq. (2). For a PHERMEX cavity (d = 2.6 m, 

f = 50 MHz), this limit is only 0.728 MV/m. 

The upper limit for ion multipacting is, on the other hand, larger by a 

factor of the ion over electron mass ratio. The lower limit at which ion type 



sparking actually begins to occur is complicated by cavity surface effects and 

residual gas pressure. An empirically motivated expression for the lower 

threshold for ion sparking is given by 

f(MHz) = 1.643 E^(MV/m)exp[-8.5/EK (MV/m)J (3) 

and 

=? KEK/G , (4) 

where G is a geometrical enhancement factor and K is a factor that depends upon 

surface conditions and residual gas pressure. For a PHERMEX cavity G = 1.26, 

and for a well-prepared system K ~ 2 to 3. Equation (3) is similar to a result 

obtained by Kilpatrick. 

An rf cavity should, therefore, operate with an accelerating gradient 

between the ion sparking limit of Eq. (4) and the electron multipacting limit of 

Eq. (2). The former is plotted as a function of fundamental frequency f in 

Fig. 1. 

The energy stored in a cavity is 

u = \ *0*W
6 -^w - (5) 

where R is the cavity radius and J Q ( X 0 1 )
 = 0- For each micropulse passing 

through the cavity, the cavity energy is reduced by 

6U ~ 0.707 pdE , (6) 
z 

where p is the total charge in a single micropulse. Finally, the approximate 

accelerator length per GeV is 

L(m) S 1.414 x 1O3/E (MV/m) . (7) 
z 

This length does not include the injector and foa <••-'i;., elements. 

T. J Boyd, private communication to L. E. Thode, June 1981. 



In Tables I through III a summary of the field strength implications are 

given for 50 MHz, 100 MHz, and 200 MHz, respectively. In obtaining these 

results, we have assumed a one-half wavelength cavity with each micropulse 

having a peak current of 10 kA. The square current pulse width is T = 0.25 d/c. 

Looking at the number of pulses, [U/6U], it is clear that a significant amount 

Criteria 

TABLE I 

SUMMARY OF FIELD STRENGTH IMPLICATIONS AT 50 MHz 

WITH p = 2.5 x io"5 COULOMB/MICROPULSE 

E (MV/m) U (kJ) 6U (kJ) [U/6U] 

Equation (4) 
K = 2 

Equation (4) 
K = 3 

14 

21 

11.7 

26.2 

0.74 

1.11 

15 

23 

L (m) 

101.0 

67.3 

Criteria 

TABLE II 

SUMMARY OF FIELD STRENGTH IMPLICATIONS OF 100 MHz 

WITH p = 1.25 x io"5 COULOMB/MICROPULSE 

E (MV/m) U (kJ) 6U (kJ) [U/6U] 

Equation (4) 
K = 2 

Equation (4) 
K = 3 

18 

27 

2.41 

5.46 

0.24 

0.36 

10 

15 

L (m) 

78.6 

52.4 

Criteria 

TABLE III 

SUMMARY OF FIELD STRbKOTH IMPLICATIONS AT 200 MHz 

WITH p = 6.25 x 1O~6 COuLOMB/MICROPULSE 

U (kJ) 6U (kJ) [U/6U] 

Equation (4) 
K = 2 

Equation (4) 
K = 3 

E (MV/m) z 

23 

35 

0.491 

1.137 

0.076 

0.116 

L (m) 

61.5 

40.4 



of rf energy must be supplied to each cavity if long pulse trains are desirable. 

This implies that the cavity Q must be relatively low, i.e., Q ~ 50 to 200. 

This would have the added advantage of more control on the pulse-to-pulse energy 

variation and would also provide better energy utilization. Most importantly, 

the accelerator lengths are far shorter than even the most optimistic induction 

linac concepts. 

III. AXISYMMETRIC BEAM LOADING 

A. Background 

Cavity loading due to beam driven radiation is a well-known problem in 

rf linear accelerators. In fact, one of the major criticisms of the high-

current rf ' linac concept was that beam driven radiation into unwanted modes 

would be catastrophic because the radiation energy source scales as E • J, or as 

the charge of a micropulse squared. In particular, enhanced spectral content in 

unwanted modes not only serves as a sink for beam energy but it can seriously 

magnify transverse beam emittance. Even worse, the coupling to the non-

axisymmetric £. = 1 mode would deflect the beam into the drift tube wall. This 

last issue of the beam breakup mode is addressed in Sec. IV. In the present 

section we have undertaken a quantitative study of high-current driven cavity 

radiation to indicate both the magnitude and scaling of the axisymmetric beam 

loading. 

A simple right circular, cylindrical cavity is employed to represent the 

essential physics, if not the details of more complicated, realistic cavity 

shapes. A major advantage of this is that the eigenmodes for such a system are 

readily calculable. Even though the ideal structure is perturbed by drift tube 

apertures of radius r,, this is a relatively small effect so long as the cavity 

radius R satisfies R >> r ,. As a further simplification, we will consider only 

single cavities, driven at the fundamental TM frequency. Although coupling of 

cavities is often done to enhance synchronism, we feel that this more complex 

configuration can best be illuminated initially by treating the single cavity 

loading exhaustively. 

The study is limited to intense electron beams, which are at least modestly 

relativistic upon injection into the cavity. In fact, when treating the beam 

dynamics with simulation, the electrons are constrained to be neither relativ¬ 

istic nor to follow one-dimensional trajectories. Transport of multikiloampere 



beams into rf cavities, however, does require that they be relativistic enough 

to avoid space-charge limitations. For 10-kA micropulses this corresponds to 

about 3 MV. In the simulations, the transport itself was aided by assumption 

of a straight solenoidal magnetic guide field. We can include more realistic 

focusing fields, but there is no reason for doing so at this juncture. 

B. Analytic Model 

The model we use to calculate the response of the cavity modes to the beam 

is well known. It is not a self-consistent calculation in that the modifica¬ 

tion of the beam distribution by the cavity fields is not taken into account. 

However, we find the results to be in good agreement with self-consistent 

electromagnetic, relativistic, two-dimensional, particle-in-cell simulation 

results. 

In terms of the vector potential A and the scalar potential ((>, Ampere's law 

becomes 

—2 = V - h 
8tz u c at 

We have chosen the Coulomb gauge: V • k = 0. The vector potential can be 

expressed in terms of the cavity eigenmodes a,, 

(9) 

which satisfy V a. + (u»,/c )a\ = 0. Substituting Eq. (9) into Eq. (8), multi-

plying by a, *, and integrating over the cavity volume Q yields 

= £0 f k • (*+ eo It 

The last term in Eq. (10) can be rewritten as 



a. • Vdi d x = sr / 0 a • ds - 57 / i)iV • a,d x . (11) 
A ot 

S 

Because 0 = 0 on the cavity surface and V • a. = 0 in the cavity volume, this 

term vanishes, and the time evolution ol a cavity mode is given by 

\% = rQ 
where 

= j J d3x . (13) 

In obtaining Eq. (12) we used the property that 

V 

This normalization yields 

(8 •*'z) ' R ap0) (i 

r/R)cos(P7iz/d) , (15) 

where 

All other components can be calculated in terms of a . Again, we have defined 
z 

R as the cavity radius, d as the cavity gap,, and c as the speed of light in 
vacuum. 



Also, JnCXn ) = 0> where £ is the azimuthal mode number, n is the radial mode 

number, and p is the axial mode number. 

Defining £. = q. + iiu.q. , the solution to Eq. (12) is 

lx = Vxexp[i($K + wxt)] + D^expCiuyO , (17) 

where V. and <}>. are the magnitude and phase of the homogeneous contribution and 

o J A (18) 

is from the inhomogeneous contribution. Initially, V. = 0 except for the funda-
A. 

mental mode. Having the solution for £. , the mode energy is 

Gii/en a current density distribution J, V,, and <K, Eqs. (17) through (19) 

describe the cavity loading. 

As a starting point, we consider the cavity radiation driven by a point 

charge that enters the cavity at t = 0 and moves rigidly along the z-axis at 

velocity c. For such a charge the current density is 

J (z,t) = pc 6(z - ct)6(r)/2rcr . (20) 

From Eq. (13) we obtain 

cos(prtct/d) 

= pc a (0,0,0) cos(pnct/d) , (21) 



where we have dropped the subscript "z" from a. It follows that 

d/c 

f a. (0,0,0) I d t ' cos(pnct'/d)exp(-itut') 

0 

(22) 

Suppose we have a train of point charges separated by a time 2n/iu , the 

current density is then 

J (z,t) = pc > 6[z - ct + 2n(n -

n=l 

]6(r)/2nr (23) 

It follows that 

aOnp ( O ' ° 'O ) 

n=l 27t(n-l)/uj 

- l)/uix]Jexp(-i«uxt') 

exp[-i2n(n -

d/c 

j dt 'cos(prtct/d)exp(-iu). t ' ) 

s in(N n /u , x ) L ( 1 ) 

= N exp[-in(N - 1)UL/UI ] M . , , JD^ r A x IN sin(rau./uj )l \ [si 
M 
N u./UJ 

A X 

(24) 

If we let w -» oo and N •* » while keeping T = N • 27t/u) constant, we get the 

result for a constant current pulse of width T. Thus, a train of micropulses of 

finite pulse width yields 

rsin(u.xT/2) 
exp(-iu,xT/2)[ i J (25) 



The energy in an initially undriven mode after N pulses is then 

,2 

UA = V 4 

[1 - (-l)Pcos(u)xd/c)J . (26) 

Finally, the energy radiated into the fundamental mode is determined from 

C = exP[-iu)010d/2c - iu.010T/2l 

and is 

1 F2 
U010 = 2 £0 E

Z010 

(27) 
£0 X01 " V W 

V 
xor 

-I sin2(u)oiod/2c) , (28) 

where we have chosen the phase <f>0}0 f°
r maximum acceleration and V. . 

C. Analytical Results 

Our first concern was to check the analytical results against particle-in-

cell simulations. In Fig. 2 the amount of energy radiated into an initially 

empty cavity is plotted as a function of the number of micropulses passing 

through the cavity. The parameters are p = 1.74 x 10 Coulomb/micropulse, 

R = 2.3 m, and d = 2.5625 r.i. The comparison between the analytic result and the 

"slug" beam is very good. Where a fully self-consistent beam is injected into 

the cavity, a combination of space-charge and induced fields reflects the beam 

10 



TABLE IV 

SUMMARY OF ENERGY IN UNWANTED MODES AFTER 100 PULSES 
HAVE PASSED THROUGH THE CAVITY 

Io (kA) 

10 

10 

10 

10 

T(nsec 

1.25 

1.50 

2.50 

3.3 

; A 

266 

323 

223 

?57 

t 010 

J 

J 

J 

J 

U010(klystron) 

11.0 kJ 

15.8 kJ 

43.0 kJ 

71.5 kJ 

after about seven pulses, that is, the energy in the cavity modes becomes about 

equal to the kinetic energy of the micropulse. The details of this simulation 

will be discussed in more detail later, but we feel that the analytic results 

will yield essentially the correct beam loading for an actual beam. 

With some confidence in our result, the energy in unwanted modes was 

calculated for a 10-kA beam for various micropulse widths after 100 pulses. 

Again, the cavity dimensions are R = 2.3 m and d = 2.5625 m. Basically, we find 

that the energy going into unwanted modes is negligible compared to the energy 

going into the fundamental. This will be true even for S. f 0 modes as long as 

the cavity is "detuned," that is, w./w.,. f odd integer. A summary is given in 
A U 1U 

Table IV. 

D. Numerical Simulations 

The simple model derived in the previous section is very useful for calcu¬ 

lating the beam loading on the cavity. However, space charge, finite transverse 

dimensions of the beam, and beam distortion by the cavity fields were neglected 

in the? model. In short, it did not attempt to evaluate the effect of cavity 

fields on the beam. To study the self-consistent dynamics, we have employed the 

two-dimensional particle-in-cell code CCUBE. This fully electromagnetic, 

relativistic simulation code has been used previously in a wide variety of 

intense non-neutral beam and accelerator studies. The present calculations were 

performed in cylindrical (r,z) coordinates, with azimuthal symmetry (that is, 

a. - o). 
A pill-box, right-circular cavity was used for these simulations. The 

cavity, when driven, was operated on the TM.._ mode. In fact, this cavity 

11 



fundamental was the dominant mode excited in undriven cavities when a series of 

beam pulses were injected. The cavity length d was taken to be slightly larger 

than its radius R with d/K ranging from 1.07 to 1.16. As the calculation1., v-t.it 

scaled to the TMn ,,, mode, no absolute dimensions attached are to them. In fact, 

we are quite interested in PHF.Rf-IKX, which operates at 50-MHz, or similar high-

current linacs. For a FHKRMKX-1 i ke cavity, K = 2. i m and d -= Z.(i m. 

!t seems appropriate .it this point to describe the normalizations in the 

simulations. Brief lv, tune is scaled to u> = (47Tt' "̂ri /ml ̂  ,md distance lo c/w . 
p o ;-. 

Although the frequency .nut dimensions arc thus arbitrary, depending on a scaling 

density n , the current, which is prifuitiorul to fn(r)rdr, is independent of n 

and thus is an absolute quantity in phvsit.il units. Simiiiarly potential and 

energy are scaled to me in the ia 1cul.itious and are invariant. When fields are 

quoted, though, the reader should note that they have units of an energy 

gradient. In general they stale with n c, and a reference density has been 

employed to give the quantities more practical significance. This density was 

arbitrarily taken to be such that c/oi = 0.0r) m. 
P 

because of the complicated dynamics of the full self-consistent loading, a 

series of calculations were performed to explicitly isolate various aepects of 

the problem. In the first, a sequence of fixed current profiles was propagated 

through the single cavity. These current "slugs" radiated electromagnetic 

fields into the cavity but were not in turn acted upon by the fields. These 

simulations were closest to the assumptions of the loading model derived in 

Sec. I1IB. The cavities were not driven so there was no confusion between the 

radiated field distributions and a preloaded field. The second type of simula¬ 

tion also contained no cavity pre-excitation, but simulation macro-particles 

were used to construct the injected pulses. Because these pulses were free to 

respond to the self-excited cavity, space-charge effects and kinetic energy 

depletion due to J • E were self-consistently calculated. To facilitate pulse 

propagation across the cavity, a uniform solenoidal field B , such that Q = ui , 

Q = | e f B /me, was included. Although imposition of a nonfringing field of 

this magnitude around a 2.3-m-radius cavity is possible, it is admittedly not 

practical. For these calculations, it was unnecessary to complicate the beam 

dynamics with focusing effects, however. Finally, the realistic accelerator 

problem was treated. We limited the studies to early cavity loading, because 

cavity loading is most severe before the beam has become too "stiff" (v >> 1). 

12 



The cavity was driven in the TM mode to between 8.5 MV/m and 15 MV/m at 

50 MHz. Maximum peak currents injected were 18.5 kA and minimum, 0.6 kA. The 

former corresponded to an average current of almost 1.4 kA. 

E. Simulation Results and Discussion 

The base line calculations were slug simulations that can most easily be 

compared with the analytic model. Several salient features of the model were 

amenable to simple tests. The model, for instance, predicted that the total 

energy radiated into the cavity should vary as the square of the total charge 

per pulse. This was repeatedly verified for pulses of various radius and 

longitudinal extent. The spectral distribution of cavity energy, moreover, was 

identical for pulses of the same physical shape but different density. For 

pulses injected at the same frequency as the cavity fundamental, the model, 

moreover, predicted that the fraction of the total cavity energy outside the 

fundamental would decrease as the number of pulses increased. For a 9.2-kA peak 

current injection, Fig. 3 shows the fraction of the energy not in T^nin as a 

function of pulse number in the simulation compared with the theory. As a 

complement to this, Fig. 2 shows the total radiated energy for this case as a 

function of pulse number. From these, it is evident that the pulses are very 

effectively driving the cavity TMj... mode. 

The magnitude of this field is increasing linearly with the number of 

pulses, so that after 10 pulses, the peak TM^.Q field has attained a magnitude 

of 2.8 MV/m. Although this field is in the decelerating phase, it is a signifi¬ 

cant fraction of the accelerating gradient. This suggests the fascinating 

prospect of building an rf autoaccelerator. Unlike Friedman's autoaccelerator, 

in which a long low-voltage beam is used to energize an induction cell which 

subsequently accelerates a much shorter beam to much higher voltage, the funda¬ 

mental time scale T = 271/iu... is fixed by the cavity geometry here. The purpose 

of such a device is not higher voltage, because this is readily attainable in rf 

linacs by stacking many cavities in series. Instead, the purpose is to overcome 

power limitations of existing rf sources. Creating an initial beam by pulse 

power certainly has limits, but these appear to be in the range of 10s of tera-

watts as opposed to 10s of gigawatts for conventional power supplies. Thus, if 

a multiterawatt electron beam can be induced to radiate its energy into a given 

cavity mode, it seems quite feasible to operate rf linacs in as high a gradient 

as the cavities can withstand (either Kilpatrick or field emission). 

13 



As mentioned, we have verified that the total energy in the cavity 

increases as the square of the number of pulses but that the relative fraction 

outside the fundamental decreases. The excitation of higher order modes, there¬ 

fore, becomes less important as the number of pulses increases. Even if the 

magnitude of fields in these unwanted modes were to remain high, we are confi¬ 

dent that loading of the cavities with a frequency dependent absorber could 

reduce the levels to acceptable values. A more fundamental limitation is deple¬ 

tion of the pulse energy after the gradient reaches sufficient magnitude. 
2 

If the kinetic mean energy of an injected pulse is (y - l)mc , this pulse 

will lose all its energy once the loaded field has reached a magnitude E , such 

that 

d 
2 

E cos wt dz ^ (y - l)mc . (29) 

0 

2 
This places an upper bound on E ; E = w(y - l)mc /(ec sin iud/2c). Once this 

gradient is attained, we find that a moving virtual cathode forms on the pulse. 

By this we mean that a fraction of the beam is reflected, while the rest propa¬ 

gates through the cavity. In a low-current beam for which Ay/y << 1, it is 

plausible to treat single particle trajectories in which all particles are 

either transmitted or reflected. For these high-current pulses, however, the 

collective behavior of a virtual cathode is observed whenever the pulse kinetic 

energy drops below a finite, nonzero value. The reflected portion of the pulse 

is moving in the opposite direction and so is in an acceleration phase. Because 

it extracts energy from the cavity, the net energy radiated is reduced from the 

nonreflecting case. Fig. 4 shows growth of rms E field at the cavity midpoint 

for a slug simulation compared with a fully interacting particle one. The field 

has reached pulse reflecting levels by pulse number seven. Interestingly, even 

after partial pulse reflection, the TM..- field continues to grow. The net 

efficiency of field generation is clearly reduced, but as Fig. 5 shows, the 

relative magnitude of the TM-10 mode 'rcreases vis-3-vis any of the non-

fundamental and presumably deleterious modes. Actual operation in this fashion 

may prove undesirable because of breakdown problems associated with residual 

charge left in the cavity, but it is not ruled out on the basis of the spatial 

field distribution. 

14 



The spectral distribution of radiated energy is of considerable interest. 

Unfortunately, exact details of the spectra depend sensitively on details of the 

cavity structure. As an example, a series of calculations were performed in 

which the pulse structure and current were identical, with only the width of the 

cavity varied. Figure 6 shows the E power spectrum on axis of three of these 

calculations. Although the ratio of width to radius of the cavity d/R varied 

from only 1.105 to 1.159, there is a noticeably different spectral structure 

away from the fundamental w_]0 - 0.052 w . In all cases, the TM. . spectral 

component after 10 pulses was overwhelmingly dominant and within graphical 

accuracy at the same level. For a simple pill-box cavity, the next eigen-

frequency, which is an integral multiple of the fundamental, is the fifth 

harmonic. Both analytic 2nd numerical results indicate that this should be the 

next strongest mode. There is in fact a near coincidence of the TMn»_ and TM01, 

modes here. Integrated over the full width of the cavity, this is clearly the 

second strongest mode. For Fig. 6 we have chosen an axial position for which 

the variation in spectra with cavity geometry is particularly clear. 

It should all o be noted that, although the overall agreement between 

simulation and analysis is excellent, numerical deviations may have played some 

role in choosing between particular resonances. As an example, the fundamental 

TMnif. frequency for a perfectly conducting guide is w_1f. = 0.05236 w in these 

units. The numerical eigenvalue computed on this finite mesh, however, is 

w = 0.05201 w . Although the discrepancy is well under 1%, such differences 

make exact spectral distributions suspect where weak resonances are involved. 

In any case, Fig. 6 clearly illustrates that there is relatively little energy 

in the nonfundamental modes. 

To summarize these results, we find that the frequency of pulse injection 

strongly determines the dominant cavity mode excited by the beam loading. As 

predicted by the analytic model, the cavity energy increases as the square of 

the number of pulses, while the fraction of this energy not in the fundamental 

monotonically decreases. The slug calculations, which correspond to Y ~* °°> a r e 

found to yield the same cavity loading dynamics as fully mobile particle 

calculations of the accelerator mode. The main features of the radiated spectra 

are in quantitative agreement with the analysis, but secondary features may be 

model dependent in the simulations. 

Finally, self-excitation of the cavities by intense injected pulses does 

not appear to have fundamental problems. A practical limitation may prove to be 

15 



virtual cathode formation when too much energy is extracted from the pulse, bvt 

even this condition did not degrade the relative energy flow significantly. The 

efficiency of field accretion was reduced, however. Further work on this 

concept is apparently needed to assess its ultimate utility. 

IV. BEAM BREAKUP INSTABILITY 

The beam breakup instability causes the deflection of a charged particle 

beam in a linear accelerator from its original straight line path by a self-

generated azimuthal magnetic field -B_. In a cylindrical rf accelerating cavity 

the typical beam breakup field is a TM.ir> mode. This mode is produced by the 

propagation through the cavity of one or more beam pulses whose centroids are 

slightly displaced from the cavity axis; its amplitude is proportional to the 

magnitude of the displacement; Because the field so produced deflects the beam 

and in turn increases its centroid's displacement from the cavity axis, there is 

a positive feedback loop which drives the instability. 

In this section we calculate the maximum possible radial displacement 

caused by the beam breakup instability for a multipulsed relativistic electron 

beam produced in M-rf-accelerating cavities. We find that a series of 10-kA 

electron micropulses can be accelerated to 1 GeV electron energies through forty 

50-MHz rf cavities each with an accelerating gradient of 14 MV/m and suffer no 

more than a 20-fold increase in the magnitude of an initial radial perturbation. 

Larger accelerating gradients result in even smaller radial displacements. 

The amplitude and phase of the TM,. _ BQ field produced by the passage of N 

pulses of duration T, radius R and the centroid of each coherently displaced by 

an amount 6 are straightforwardly calculated from Eq. (15) and given by 

Beno(r,0,t) = - qn()(t) ̂  a z n o (r,6) . (30) 

Therefore, 
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J ' ( 

n J 2 ( X l l } 

/s^n u)11Qd/2c\ /s in ">ii£'2\/*iJ> ^ U0/W_010 \ 

\ wuo~d72c /V "•noT/2" A N s i n r a i'iio /"woio/ 

* sin U)u0(t - d/2c - T/2 - (N - \)n/iuQlQ) . (31) 

Note that for small r, th.2t is, for Xnr/R << 1, J'(xnr/R) = 1/2 and BQ is 

independent of r. 

The radial equation of motion of a nonrotating electron in the middle of 

the (N + l ) t h pulse is 

r = (ec/mv)Be(t) , (32) 

where y is assumed constant throughout a single cavity. Integrating this 

equation over the time spent in one cavity, the total radial displacement and 

velocity per cavity r. and r_ is found 

r f - r± + (A'5«uno/y) sin u>nod/2c {sin[(N + l)n ^no/%lQ]) (33) 

r f = r. + i± d/c + (A'4u)110d/2cy){cos[u)no(7t(N + l)/u)01Q - d/2c)] 

- (2c/iun0d) sin U)n()d/2c cos[(N + 1) ™»u0/u>01Q]} , (34) 

/ Npe \ /2J ' (x nR /R)\ 
where A' = A 1 " ° ) cos6 J'(Xllr/R) 

\eRmc7\ iXnJ^XnJ/ 

x 
/s in u»llod/c2Wsin U)11QT/2ysin Nn u»n0/tt»010 \ 

V Wnod/2c A '"iio1/2 AN s i n r a u i io / l uoio/ 
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and r. and <:. are initial values upon entering the cavity. 

A set. of simple recursion relations that determine the maximum possible 

radial displacement and velocity of an electron in the (N + 1) pulse as it 

leaves the M cavity rM and rM can be derived from Eqs. (33)-(34) by using 

the following assumptions. 

1) The radial displacement of the previous N pulses in the M cavity is 

rM-l. 

2) The factors within the curly brackets are set equal to one. 

3) Sin N7nuno/u,010 = 1. 

4) Cos P = 1. 

5) The Y in the if cavity, y , is given by yM = y T (M - l)yo, where yi 
is the injection energy and y is the energy increment per cavity. 

6) x n R o and x n r « R. 

Assumptions 1,3, 4, 5, and 6 always overestimate the instability. Assumption 2 

also overestimates the instability whenever 2e/w d ̂  1, which is the case in 

the following numerical examples. Note that assumptions 2 and 3 remove the 

dependence on N, the number of pulses. The recursion relations are therefore 

rM = rM.j + A u , n o s in (u , 1 1 0 d/2c )r M . 1 / [ (y i / y o ) + M - 1] (35) 

and 

rM = rM-l + W / c + ( A w l l 0 d / 2 c ) r M - l / l W + M " 1 ] ' ( 3 6 ) 

where 

sin w -nd/2c 
I — 1 

u,nod/2c 

s i n w1.,n* f *» -

iunoT/2 "sin 
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Solutions to Eqs. (35)-(36) in terms of the radial deflection after the M 

cavity r,. normalized to the size of an initial displacement r_ are shown in 

Fig. 7 for two cases of interest. For these cases we have used parameters for 

a 50-MHz rf cavity such as those used in PHERMEX (d = 2.6 m, R = 2.3 m), a 

10-kA micropulse current (T = 2.5 ns, p = 2.5 10 coulombs/micropulse) , accel¬ 

erating gradients 14 and 34 MV/m, and an injection kinetic energy of 3.07 MV. A 

40 cavity accelerator of this type would correspondingly accelerate electrons to 

1.0 GeV or 2.5 GeV. Note that the worst case, 14 MV/m and M = 40, gives only a 

20-fold increase in the magnitude of a presumably small initial radial displace¬ 

ment . 
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Fig. 1. 

Sparking limits as a function of fre¬ 
quency. The two solid lines are 
Ez(MV/m) for K = 3 (upper line) and 
K = 2 (lower line). The dashed line 

Fig. 2. 

Energy radiated into cavity modes 
Z.U, as a function of pulse number N. 
Trie open boxes represent the self-
consistant simulation results, the 
closed circles the "slug" simulation 
results, and the x's the analytic 
theory. 

10' 

Fig. 3. 

Relative fraction of field energy in 
cavity fundamental WQIO a s a function 
of pulse number N for slug simulation 
CY = °o) • i 
u y ' maj 
T = 1A.1 u>p. 

9.2 kA, I a v e = 0.6 kA, 
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Fig. A. 

Comparison of rms magnitude of Ez in 
slug (YO = % closed circles) and 
particle (Y O = 10.0, open circles) 
simulations as a function of pulse 
number N; I m a x = 9.2 kA, I a v e = 0.6 kA, 
~0 = 1.0 Up. Because of partial pulse 
injection initially on particle calcu¬ 
lations, pulse number is shifted by 
one relative to actual time for plot¬ 
ting. 

Fig. 5. 

Comparison of relative fraction of 
field energy not in TMQIO for same 
calculations as Fig. 4. 

WtU) 

Fig. 6. 

Ez spectrum on axis at z = 0.8 d after 
10 pulses; (a) d/R = 1.105, (b) d/R = 
1.114, (c) d/R = 1.159. 

Fig. 7. 

Maximum radial displacement of the 
beam centroid after leaving the M t n 

cavity rM normalized to the initial 
perturbation r versus M as determined 
from Eqs. (35)-(36). Peak accelerat¬ 
ing gradients per cavity are 14 MV/m 
(solid) and 34 MV/m (dotted). Other 
parameters are R = 2 . 3 m , d = 2 . 6 m , 
T = 2.5 ns, p = 2 . 5 10~5 coulombs/ 
micropulse and Yi = 7.0. 
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