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ABSTRACT

The linear stability of an infinite inhomogeneous Vlasov plasma
containing a current. flowing perpendlcular to a straight magnetic field
i1s investigated. |

Tiﬁe independent solutions to the Vlasov-Maxwell equations are

constructed which model two physical situations: a gshock in which

density and magnetic field gradients point in the same direction and a
sheath in whiech the magnetic field and density gradients point in
opposite directions. These solutions are used as the zero order around
vwhich the equations are linearized. The 1linear equations imply a
dispersion relation connecting the frequency, growth rate, and
wavenumber of the first order perturbations. In the course of this
derivation the local approximation was used, the ions were cosidered to
be upmagnetized, while the effect of the magnetic field and ExB and
gradient drifts were concentrated in the electrons. In contrast to
'pfevious work the full contribution of transverse fields 1s included in
the dispersidn relation and arbitrary direction of wave propagation in
the plane formed by the direction of the magnetic fieldland the current
is allowed. The dispersion relation 1is solved numerically for a
variety of 1limiting cases as well as for the shock and and sheath
configurations.

Solutions represehting the lower hybrid drift and modified two

stream instability were found and studied in detail.

vii



It was demonstrated that transverse fields effect the dispersion
properties of these instabilities only when the ratio Be/(kae)2 is
greéter than one where B, is the electron beta and ka, is the wave
number normalized with the electron cyclotron radius, In this case
wave growth rates are generally reduced and their direction of
propagation is shifted away from the direction of the croasfield
current. Also discovered was the fact that the shock configuration
results in maximum growth rates for waves propagating at an angle of
several degrees from the perpendicular to the magnetic field, while the
sheath configuration has maximum growth rates for perpendicular
propagation. The possible contribution of these and other dispersion
properties of cross field drift instabilities to the earth's bow shock

and other physical shocks and sheaths is discussed.

viii



CROSS FIELD CURRENT INSTABILITIES IN A VLASOV PLASMA



I. INTRQDUCTION

In recent years fhere has been much interest in the stability
properties of a plasma in a spatially varying magnetic field. One
reason for this interest is that the heating and confinement of
therménuclear plasmas with magnetic fields require the creation of
sheaths containing iﬁhomogenous plasmas and magnetic fields. Another
reason is the increasing number of measurements made by satellites and
space probes within the various inhomogenous plasmé structures of our
solar system.l One widely studied example is that of the earth's bow
shock, the region of interaction of the supersonlic solar wind and the
dipole magnetic field of the earth.

These and other similiar physical situations contain plasma and
field configurations which are neither in thermodynamic¢ equilibrium nor
are able to relax to equilibrium by way of binary collisions because of
the relatively large collision times and wean free paths involved.
Typically' the mean free path of charged particles in the earth's how
shock is many times greater than the shock width, and in many
laboratory experiments .and projected fusion reactors it exceeds the
transverse dimensions of the apparatus. The behavior of such
'oollisionless‘ plasmas are dominated by collective oscillations which
can bé described by the collisionless Boltzman or Vliasov equation.
_Theéé wavés are impoftant not only because nonlinear growth nay disrupt

a confined plasﬁa but because they also contribute to wave turbulence



which fakés the place bf collisions in a classical plasma, scattering
charged particles and determining 1ts transport properties.
‘, In a magnetized ihhomogeneous plasma there are a number of waves

" which may be driven unstable by the current necessary to support a
magﬁetic inhomogéneity. Among them are several waves with periods less
than an iqn‘cyclotron period and wave lengths less than an ion Larmor
radius. These waves are studied in this dissertation by performing a
normal mode analysis of the‘linearized Vlasov-Maxwell set of equations
using '; steady state configuration characteristic of a hot plasma in a
magnetic field gﬁa&ient. This analysis will reveal not only what
configurations will be unstable but also the wave spectrum and growth
rates of the unstable modes, and will constitute the main result of
this dissertation. |

A self consistent and more complete analysis of shocks and
magnetic confinement sheaths requires including the effect of the
unstable wave spectra upon the initial plasma configuration via
anamolous transport coefficients due to wave particle interactions.
for example, when studying resistive shocks the anamolous resistivity
would be calculated‘and used in a macroscopic equation to  determine
" shoek widths, while for confinement sheaths the anamolous particle
diffusion rate and hear flux are quantities of more interest. However,
in ﬁhis dissertation the construction of a self consistent picture of
either a shnock or sheath is not attempted. Rather, that piece of the
picture eneomﬁassed by the linear theory of unstable waves is studied
in detail.

The field and plasma steady state configuration used and their

relationship to certain'physical situations will be discussed below in



Chapter II, Steady State. Here it 1s described in qualitive terms
sufficient for introducing the nature and delineating the boundaries of
this work. The steady state fields consist of a unidirectional
mangetic field with a small gradient in the magnitude perpendicular to
it. Antiparallel to the magnetic gradient is a uniform electric field.
Theée fields are used to calculate the orbits and constants of motion
of a charged particle responding to them, which in turn allows the
specification of the relevant electron and ion distribution functions,
including electron drifts and density gradient. The steady state
configuration can then be uniquely described with a few parameters. 1In
this work there are five: mg/m;, the ratio of the electron and ion
masses, “pe’“e , the ratio of the electron plasma frequency to the
electron cyclotron frequency, T,/T;, the ratio of eletron and ion

temperatures, 8 the ratio of the electron thermal to magnetic field

e!
pressures and any two of the drift speeds v , v,, and <vg> which are
respectively the electron ExB drift, the density gradient drift, and
the average magnetic field gradient drift.

. Chapter III, The Dispersio

Eelation, presents the details of the
normal mode analysis. The Vlascov-Maxwell =set of equations 1is
linearized by separating the fields and distributions into a
2ero-order, steady state part specified by the above five parameters
and a first order fluctuating part whose quantities have a space-time

ol (ko x-ut) where k is the wave number vector and w is

dependence of
the complex frequency, the imazinary part of which represents temporal
'wave growth or decay. The first order equations imply a dispersion

relation which, in contrast to previous work, has been derived in a

general form including all terms due to transverse fields and allowing



for wave propagation in the plane defined by the magnetie field and
cross field drifts. Solution of this dispersion' relation for an
infinite plasma yields w as a continuous function of Kk and the
parameters describing the steady state. 1In the context of the present
analysis the specification of the steady state or zero order parameters
completely determines all the physiecs to be derived from the dispersion
relation.

Several linear instabilities 1n this parameter space have already
been ideuntified and studied by others. The scope and physiecal
relevance of these studies will outlined and related to the present
work in Chapter 1V, Review of Linear Instabilities. Because two of
them, the modified twec stream and the lower hybrid drift 4instabilities
propagate at relatively long wavelengths they are sensitive to
electromagnetic effects. Therefore these have been chosen for special
study in this dissertation.

Chapter V, Numerical Methods, presents the dispersion relation
prepared for computation and outlines the numerical methods used ¢to
gsolve it, while Chapter VI, Solutions, presents these solutions. Their
relationship to bpth observed and derived parameters, ineluding shock
thickness, anomalous transport coefficients, and magnitude -and
polarization of fluctuating fields are discussed. Special attention is
given tb the effect of terms due to electromagnetic fields, density and
magnetic field gradients and their alteration of the dispersion
properties of crossfield drift inétabilities known from less complete

dispersion relations. A variety of values for steady state parameters

are used including those appropriate to both stationary sheaths and



moving shocks. The latter case is emphasized since it has previously
been less well studied than the former.
These results are summarized and discussed in the last chapter,

Chapter VII, Summary and Conclusions.



II. SIEADY STAIE
The steady state field and plasma configuration 1s constructed
with two examples of inhomogeneous plasma structures in mind, the
earth's bow shock and the implosion and post implosion sheaths created
in laboratory pinches.
For phenomenological purposes observations of the earth's bow
shock have been categorized according to the values of the plasma

beta, B, and the magnetosonic Mach number, M:

ﬂ."."- Bﬂ'ﬂo('l;i-"l,'-) M‘.:- Vs...
B? VCa +Cs

where Vg, 1is the solar wind speed perpendicular to the magnetic field
direction, B the steady state magnetic field, and CA and CS are the
Alfven and sound speeds, n the plasma density and Tg and Ty the
electron and ion temperatures. These values show wide variations, but
a ‘'typical' shock configuration of interest is the quasi perpendicular
laminar ghock characterized by 1low Mach numbers, M £3, low

beta, B < 1, and angles between the magnetic field and magnetic field

gradient directions, 0 of 350° < 8 g < 88° (Greenstadt,1975). In

nB’

this case the bow shock appears as a simple monotonic magnetic profile

possibly with some periodic downstream variations. Its width is the



same -order of magnitude as the ion Larmor radius but appears to be
primarily determined by dissipation due to turbulencé created by cross
field drift 1instabilities present in the shock (Morse and
Greenstadt,1976). There is also an electric potential jump across the
shock.

Many of the gross features of the earth's bow shock are reproduced
in experimentally produced magnetic shocks and implosion sheatha. The
shocks in magnetic pinches are nearly perpendicular by design, the
contain potential barriers (Paul et. al.,1965), and their widths can
also be determined by the properties of cross fleld drift instabilities
(Manheimer and Boris,1972; Hamasaki and Krall,1974).

The main difference between the two situations is that laboratory
shocks and stationary sheaths are used to compress and confine hot
plasma, while the solar wind plasma is slowed down as it meets the bow
shock but still passes through it. The plasma in a pinch is reflected
from the magnetic gradient and builds up in front of it, during the
implosion phase, then is confined by the magnetic gradient during the
relatively stationary post implosion phase (e.g. Commisso and
Griem,1977). In contrast, the density of the solar wind plasma
increases with the magnetic field stpength toward the downstream region
of the bow shock and is consistent with changes in other plasma
paramefers as described by conservation. laws (Morse and
Greenstadt,1976; Sanderson,1977).

Actually the two configurations are not always distinguished from
one another, especially in implosion sheaths where plasma is partially

reflected by and partially passes through the magnetic gradient.

However 1in referring to this distinction we will use the following



definitions. A shock is an inhomogeneous magnetic structure with
plasma flowing through it and magnetic field and density gradients
pointing in the same direction, while a sheath is one with no relative
flow of plasma and fields, and magnetic field and density gradients
peinting in opposite directions.

The field configuration and geometry used 1is that of the slab
model of Krall and Lieﬁer (1971), illustraﬁed in Figure 1, which
consists of crossed B and E fields pointing respectively in the
positive =z and negative x directions. The coordinate x corresponds to
the radial coordinate in a cylindrical pinch while the B field in the z
direction corresponds to either the azimuthal or axial magnetic field
in respectively a Z or theia ninch. When applied to the earth's bow
shock x corresponds to the coordinate along a line connecting the sun
and earth. Within a shocic there is an additional electric field in the
positive y direction which causes the plasma to move in the positive x
direction though the shock This field is not shown because 1t 1is
assumed that it can be removed from consideration by transforming to an
inertial frame which 1s moving with the plasma. In actual fact there
is no inertial reference frame embedded in a plasma as it moves through
a shoek with a density «eradient, since according to conservation
requirements in one dimension the density and velocity of a fluid
element, n(x) and v(x), must change 30 as to keep their product
constant. Therefore one should keep in mind that the use of the above
field configuration to describe a shock 1is possible only when the

accéleration of the plasma in the x directicn is ignored.
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Fig. 1, TFleld configuration for slab geometry.
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DPprift wave theory seeks to prepresent all effecta of field and
plasma inhomogeneities with gradient and ExB drifts. This is done by
employing -the 1local approximation in deriving the dispersion relation

(ef. Chapter 3) and using the following simple functional forms for
the fields:

E=-E X

(11-1)

B =B (I+€EsX)2

where Eg? the inverse magnetic field gradient scale length, serves to
introduce the gradient drifts. Any function of the constants of motion
of a particle with charge q under the influence of these fields will be.
a solution of the Vlasov equation. Here we choose one based upon two
constants which are easily integrable: the total energy, E, and the
generalized momenta conjugate to coordinate, vy, Py. In terms of
veloclity space coordinates they are:

E= 2 (W+5+¢)+IEX

- Py= m(x+ Vy/0)
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Where @ = qB/me. By combining Py and & another useful constant 1is

formed:

E-DVPy=2§ Vi + (%0 + vit{

where v, = ¢E,/B,.
Using these constants we construct an electron distribution
function consisting of a drifting Maxwellian with a density gradient of

scale length, €t

£(xy) = o e ) [+€n§x— t.!:__)z]
st 35§ 50T

(I1-2)

Here s = eBy/mge, e=|qe ., and subsequent subseripts and superscripts
*e" and "iv refer respectively to electron and ion. A temperature
gradient may also be in included in foe(x,xj (Priest and
Sanderson, 1972) but would complicate the resulting dispersion relation.
Here it 1is left cut; later its possible effects upon the results will

be discussed.

The zeroth and first velocity woments of this distribution
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function yield expressions for the electron density, n(x), and

macroscopic electron velocity,gd,

NX) = N, { 1+ €aX)

(I1-3)

Vo=V §=(%"V)]

vhere vV, = envzlﬂe and Ve is the electron thermal velocity given by

ve=(Te/me)1/2. Equation II-3 has contributions from an ExB drift,

CEXB _ cE _ )
B* B..

and an electron density gradient drift

Tec Bxvn _
e X V. =

~n
N =4 B* v E

In deriving the expression for the constant E-nvopy and the above

distribution function we have implicitly assumed the quantities voive

and Vn/ve are small by dropping terms which contain their products.

Later it will be shown that Ampere‘'s law linearly relates Vor Y and
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«~vg> the velocity averaged magnetic field gradient drift, requiring
them to be the same order of magnitude Through firsﬁ order in these
quantities the distribution function of equation II-2 is a solution to
the steady state Vlasov equation.

The funectional form ;n equation II-2 could be used for both the
electron and ion distribution functions. Then the relevant ion and
electron parameters could he made consistent with the fields through
Ampere's Law and Poisson's equation. Instead it is assumed that the

ions can be represented with a Maxwellian distribution funetion
£ V= ( L )’%' exyp l:-.."l'. EV}'J-V"-J- Vé’}] (I1-4)
° awT; 2T; J

This assumption is common in the theory of crossfield current
instabilities and 1is usuwally based on the relatively large length and
time scales of the ion cyeclotron orbits. Here a further distinction
should be made between a shock in which the ion spends only a fraction
of its c¢yclotron periocd because of the supersonic¢ speeds at which it is
moving and a broad sheath with a width large compared to an ion Larmor
radius. The ions can be only weakly influenced by the electric field
and magnetic gradient associated with a shock. 1In the limit of no
influence by the fields the 3ions may be represented by a simple_
Maxwellian. However within a broad sheath the ions may be expected to

have a distribution similiar to that of the electrons. That is:

(X,V) = ﬂa( )3/2['_‘_ €pS X+ (V,—-\L);) (11..5)
exp[- 2 $%" + (V,-\uu 23]
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‘Here the ion and electron density gradients are reqqired to have an
equal value of € in order that the electric field of equation II-1 may
satisfy Polsson's equation.
| Krall and McBride (1977) have pointed out the fact that by using
the >loca1 approximation, which ignores gradients but keeps gradient
drifts by expanding thé distribution function around the point x=0 and
keeping only the first term in the expansion, and by disregarding terms

_ involving products of the small quantities Vo/Ve and Vn/Ve distribution

functions of the form used in equations 1I-2 and II-5 are equivalent to

drifting Maxwellians of the form

) = N (;‘;"-,-_-—,)14 exr[‘z"-'}f G+ (yU)'+ “!‘ﬂ

where

Uy =Vt €a (I xr-6)
- £

Therefore the ﬁsé cf a simple Maxwellian for the ion distributibn
implies that the ions are stationary in the frame of the fields of_-
equation II-1, in=0.‘ This condition is known as ‘'electrostatic

confinement of ions' and establishes a relationship between the ion Exﬁ.

and density eradient drifts
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Wheh equations II-2 and II-4 are used as the electron and 4ion
distribution functious the total drift velocity 1s related to the

magnetic field gradient through Ampere’s law

VXB=47d = —ymn.evs§

C

C
which implies
{Vgy = Be(Vo-Va) = Pe Vy (11-8)
p 8 p &

Where <vB> is defined as the velocity average of the microscopic

electron VB drift, g

Vg = - (VI BXVB _ — (Ve
10« PB* 1 0e

ko

LYYy = W f = —€sVe

r———

e

EQuations I1I-2, II-4 and II-8 constitute the basic steady state

configuration of this dissertation.
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We also will make use of two additional conditions characterizing
the physics of shocks and sheaths. In a perpenducular shock the
magnetic field and density gradients increase by the same factor across
the shock (Boyd and Sanderson,1369). When one assumes linear gradients

We

n

in both B(x) and n(x) through the shock, this implies €, = €

B L]

refer to this as the "“shock condition"; it may be written as
Vo =< Vg7 (11-9)

In contrast, the sheath of a stationary plasma confined by a
strong magnetic field (e.g. the post implosion phase of a theta pinch)
is characterized bhy mazgnetic fleld and density gradients pointing in
opposite directions. When the expression for the ExB drift required by
the electrostatic confinement. of ions, eq. II-7, is substituted into
Ampere's Law, eq. II-8, this condition is met. Consequently we call
equation II-7 the “sheath condition". Equations II-7 and II-9 will be
used as constraints on the basic steady state configuration.

The preceding construction of the steady state configuration
proceeded from expressions for the steady state fields seen by the
plasma within a magnetic inhomogeneity. Constants of the motion of a
charged particle within these fields were found and used to construct
reasonable distribution functions. Arguments were then made to
motivate different treatments of ions and electrons. Finally the
distribution functions were integrated %o obtain expressions for

macroscopic drifts and auxiliary conditions distinguishing shocks and

sheaths were invoked.
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An alternative approach to the derivation of the electron and ion
drifts, equations 1II-3 _and I1-6 , and conditionﬁ characteristic of
sheaths and shocks, equations II~7 and 1I-9, is presented in Appendix
A. ‘There the one fluid equations are presented, assumptions concerning
the physics of supersonic shocks and stationary sheaths are made, and
the relevant equations are derived. In this way the assumptions
underlylng the steady state configuration presented in this chapter are

developed from another point of view.



III. TIHE DISPERSION RELATION

The dispersion relation for wave propagation in a steady state
plasma described in the previous chapter can be derived by linearizing
the Vlasov-Maxwell set of eyuations, and solving the linearized Vlasov
equation by the method of "integration over unperturbed orbits". This
procedure is well known and much used (Stix, Chapters 8 and 9,1962;
Krall and Trivelpiece, Chapter 8,1973). Therefore only its major steps
will outlined below.

In general the distribution funetions, f(x,v,t), and the electric
and magnetic fields, E(x,t)} and B(x,t), in a collisionless plasma are

governed by The Vlasov and Maxwell equations.

where J and , the current and charge deusity, are defined by

T =3 0.9, \VEY f=zn,,q.(ga’vﬁ
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here d3v denotes an integration over all of velocity space

dv, dvy dv,

and o the particle species of the distribution function,
The Vlasov equation is linearized by dividing f{(x,v,t), E(x,t),
and B(x,t) into a zero order steady state part and a small first order

fluctuating part

FOGGHT) = £95%00 + £,y

ExD= E“x) + E"%xb

—

Bx,)= 1}_”(5.) + B"’(x.,’t)

——

Tne steady state fields anu distribution functions of equations II-1,
II-2, and 1I-4 in Chapter Il are used as zero order quantities. |
| The resulting zero order equations are, with the exception of
Poisson's equation, satisfizd. The violation of Poisson's equation 1is
a consequence of using a homogeneous distribution %o represent the

ions. The firat order equuations are
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Equation 11i-~1, the rat order visgov squition, hag bsan expressed in
terns of the tdme derivative of tne alrteibution Punation £¢1) ag the
particles move along thulr zere order orbits, (d/db),, In ordsr te
motivate the method of "intcoration over unpsrturbed orbitasY,

Equation I[L-1 may than e formally solved by Integrating 1t aleng
a path in the aix dimenzionni puase spaes (4,%) definsd by ths erbit of

a charged partiecle in %Yhe Ciclds gﬁo) and Q(Q)

(l, X0
£ (X,V) — £ (X (o8, Y (-),~0) =

(I1I=2}

..q.; S"*EE‘?‘;*J*! x}g 4{-‘“(&,!}

where %' zZnd ' are the zocreo order 0rbitﬁ gefined by

( E"’),;. VX 5 ) y_’; dx’ (I1i=3)
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with boundary conditions

X_ :( = )= X V (¥ ="t) -\ (11I-4)

Whenever = the wavélength of interest associated with tue first
order fluctuating fields and distributions is much shorter than the
scale length of the magnetic field and density gradients it has been
suggested that the local approximation may be used in solving equations
such as III-2 (Krall,1968). In this approximation the x dependence of

the steady state distribution function is ignored so that

F‘ozx v) — + (v)

Then a local wave space-time dependence of the first order fluectuating

fields and distributions may be used

W (K X -twT)

E o= w e
(0 (KX ~wi)

B_ ‘(x,“') = B_u)(!_(_lw) e_t( (I1I-5)
() ” (k- x—wt)
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with

r& = ‘(igﬁi + '(i{;

a———

The only remnant of grédient effects in the local approximation is
contained in the gradient drifts.

Although the local approximation in the general form stated above
has not been rigorously justified, it has been shown to be valid in
certain cases for electrostatic dispersion relations based upon
distribution functions of wnich II-2 and I1I-4 are special cases
(Davidson,1976). In this work a nonlocal 1linear dispersion relation
for electrostatic waves in an inhomogeneous magnetized plasma with
cylindrical geometry was derived and solved. It was found that when
(“pelne)z >>1 the nonlocal dispersion relation for the lower hybrid
drfit instability reduced to the local dispersion relation except for
the faect that values of the wave number, ky, were limited to integral
values of the inverse radius of tne plasma column. Since (mpelﬂe)2 is
satisfied throughout this work except in one parameter study (Figure
16), the local approximation is employed with some although not
complete justifieation witiout further comment.

when Imw > 0, f(1)(x'(-uq,v'(-m),-m) = 0 is implied and equation

11I~-2 becomes

w C RKAX=X) 0T
ﬁ(.‘.ﬂ_,\.’.,w)“—:-'%\sd"‘ e X
- oD ' (I1X1-6)
(ﬂ} _E:?ﬂk!!:,
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where T = t'-t. The restrietion on Imw corresponding to allowing
only wave growth may nowWw be relaxed by analytically continuing '
f“)(x,l,t) into reglons of K,w space where Imy < O. Equations

" III-5 are also used to reduce the first order Maxwell equations to

] Q) i)
LK-'E =47W¢ (II1~-7)
| Q) ()
KX E = '_é’é. B (1I1-8)
. () ) - (1]
LKXB = "llt_Ih-— (WE (I11~9)
. C d
{)] |
K- B_ =0 (X11-10)

Here and in the rest of this chapter the arguments kK and w are
suppressed in the field amplitudes E,(U(_lg,w) and _B_“’(E_,m).
Equation II1-8 is now used to eliminate _B_(” from equation III-6

and equation IIXI-9Q

(-\ Lo x—-eo1) - (X X')
AT th' x
© (111-11)
} ’
i u! VX(KXE‘_') g ()
R 3!’
. n ) . "
TS- Kx(KX _E_,‘) - q_'!_é’__.'_f e (I1I-12)
C

When E_“) is expressed in the Cartesian coordinate system used in

Chapter II ) () 1PN

(1) Y )
E = Ex x+E.;3 -I-E;'Z‘-
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equations III-3, III-11, and III-12 form three coupled equations which
are linear and homogeneous in the coordinates of Eﬂ". These equations
imply a dispersion relation for a wave of frequency w and waveveator kK
propagating in a plasma described by the steady state distribution
functions II-2 and II-l} andlthe orbits determined by equation III-3,
This dispersion relation may be conveniently represeﬁted in- terms

of a mobllity matrix, Mi,j’ for species o defined as

; ® o N
jf.” = ; XJ?'V Qi ﬁ = Z.-. %mdmij Efl (111-13)

When this expression 1s used in equation III-12, the result with

appropriate normalization 1s the vector equation

.. — (I11-14)
zj R‘J EJ -0 III-14

where the 3x3 matrix, Hij' is defined by

¥ (O]'S “R M
Ri.iz E'-;;‘T“' sﬁi‘?{(ﬁ“}""(&' g —% MJ (1I1~15)

where subscripts 1 and j stand for one of the three Cartesian

coordinates x,y,and 2z and msa

determinate of Ryj is the necessary condition for nontrivial solutions

= 4ﬁnoe3/ma . The vanishing of the

of equation III-14 and formally constitutes the dispersion relation to

be solved.
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When the unperturbed orbits for charged particles used in the
solution of f! (k,x,@) and determined by equations IiI-3 are specified,
all information needed to expliecitly calculate the abﬁve dispersion
relation will be known. These orbits have been chosen to be consistent
with the constants of motion used to construet the electron and ion
distribution functions of Chapter II, equations II-2 and II-},
Theréfora the ion orbits are the straight line orbits of a partiole
which makes no response to the steady state fields, while the electron
orbits undergo both cyclotron motion due to the steady state magnetic
field By & and‘VB and ExB drift motion. |

Magnetic effects on a plasma component are known in this theory
not ohly through a possible distortion of the steady state distribution
functions but also through the form of the individual particle orbits.
In section Ii ;t has been argued that ion magnetic effects in the shock
configuration are negligible because of the relatively short time an
ion stays in the shock. This argument does not apply to a stationary
sheath,  Consequently not only must the effect of a non-Maxwelllian ion
distribution be considered but also the effect of ion cyclotron orbits
and drift velocities through the orbit integration of equation I1I-11.

Generally ion magnetic ocontributions to the ion orbit equations
are considered to have negligible effects on the dispersion properties
of waves of frequencies much greater than the ion cyclotron frequency
and wavelengths much shorter than the ion Larmor radius. More specifio
criteria for neglecting ion cyclotron effects have been based on an
analysis of the electrostatic dispersion relation for waves in a
homogeneous plasma (Gary,1970; Detyna and Hooding,1975). These authors

have shown that ion gyro effects are (1) confined to a cone in wave
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vector space around the direction of the crossfield drifts defined by

an angle

cos o < ( %)v"

and (2) are significant only for weakly unstable waves with growth

rates such that

Y £ Qs

Since the latter condition is not satisfied by the crossfield drift
instabilities considered in this dissertation ion gyro effects will not
be important. Consequently when the boundary conditions of equation

III-4 are used the ion orbit equations are
’
)((Tr)==i)(-*'\é{1'
F
Y (1) = Y+WT (III-16)
Z(1) =Z+ VT

Vx, Vy Ve = constaals

The electrons respond to the steady state fields of equation II-1.

However when the normalized ExB and VB drift velocities, respectively,

vo/ve and <vB>/ve, are treated as small quantities as they were in
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Chapter II, an orbit equation which retains only the first order effect
of these small quantities may be constructed, This ia éocdmpliahed by
solving =zero order equations of motion in which eleqtroﬁ drifts aré
ignored, then substituting the result into the ocomplete eﬁuation of
motion and solving again (Krall and Trivelpiece, Sea. B8.15,1973).

" When this is done the resulting electron orbit equations are

s 1 .
Vy %) = V€05 (¢4 DeT) + ﬁ%_: i sin2(b4ner)  @Ir-17)

—sin(zd+0eT) —sin ng'rg

V(D) = v, sin(d+0eT) + €sV icos(zb-inc‘l')
A COS et —cos z(¢+n¢1‘) -3 +v%
V=V
Xt =X~ Y% §sing—smbraetd+ %: §2c03(20 +0¢7)
— cos 2(b+2eT) — cos 2é +3co5.ngv -2§
Y =4=% Jeos@+aid -cose} +oir§le - <2Ly
L e"‘" i 2 sin(24+0e1) - sin2{d+061) — Sin 2

+2 sinner§
ZW=Z+\, T
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where
\Lj'"”\’ = \{tSS&hi(b

Vk = V,. Cos d

and

N = e 1 +€pX— €V Sind)
fle

When all terms in the equations for v'{(1) which are products of

trigonometric functions and terms porportional to e, are dropped,

B
equations III-17 become

V() = V, cosld +9eT)

V(%) = Vo sin(d+Qet) 4V, — €aV2
20e

Valr)= VY,
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and

X'(‘l') =X- %e is'mb - sn{d+ neﬂ} (I11-18)

Yr) =4 — Yo §cos -costbraai +7(Vo- G-VL)
Z e

Z() =2 +V, T

The contribution of the omitted terms to the dispersion relation is

discussed in Appendix B.

If equations III-16 and III-18 are empioyed for the electron and

ion orbit equations fe,i(kmlvt)' Mij, and Rij may be expressed in ternms

of standard functions and expansions{see Stix,1962; Krall and
Trivelpiece,1973). Then the time integration of equation III-6 results

in

"’! F“”

- e
T l(w-Ks”o)
(D) ' '
£ (KY,w) = —i _ V2 v, Si ¢]
e de & s e E- 52

Z Jm @ 1D+ L) (m-1)

——— kIII-ZO)
Myn=-0  Gw—K¥e +0e- \c,(vo-eu\kig

(I11~-19)

[ELTn + Ey(%- Es;i ~02e) T + i wET ]
2
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where J.and J, are spherical Bessel functions of the first kind, with

arguments kyql/n ‘integer order, and defined by their generating

(-1

function as

o )
iAsine e
e - 2 Ja{n e
n=-
(1) (1)

Integratioﬁé of fe and f; “over all of velooity space are now
required in calculating elements of the matrix Rij' These integrations
are done with the cylindrical velocity space coordinates ¢, vl, and v,
defined above. Integrations over the ¢ coordinate and v, coordinate in
the ion integral are performed analytically while integrations over v,

lead to the Fried-Conte function Z{Z) (Fried and Conte,1961)

Z(9) =X -Xod’t %_?

where the above is a contour integration with the integration contour
defined s0 as to go beneath the pole at z = { in the complex z plane.
The v} integrations in the electroﬁ integrals are done numerically.

| Upon performing these integrations and using the definitions of

equations III~13 and III-15 the following expressions are derived
— ( w2\* N :
Rxx = (CK) —\"'(?T'J ¢; 2.(%) (I11-21)

A 1 Ja> Z (58
+(CK:{—K2\L;I[2 A Z ?)
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Ruy =(&2)-(5) + % [('3) Z(e -5 () Z )2
A “’(f-g____) 4—“:6'5"(" f'_‘!s \c-e,y,

+(cn)r|(l\g 1[ Z Jn Z(’;,,)(V'.‘f%&e— Kg)
Rez = (&) (50)" +(0T %[0 200~ % (K 213
- ‘%’E}rhvgﬂ'Z% % Z(5%)

N=—c»

Rxy = = Ryx = -((ff)v{\&wﬂz V.TT x

(V,—'-G.BV_L —-NCOe ) Z("‘e)

20¢

Rxz=—Rax = {{ F TKaV H:.,i-‘_.v Z'(e,f)
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where e

Vi— K't Ve

¢

- W
- Y2 KkV;

andH represents the operator defined by

_ . ~meV,
TAM = Sav,, v. ¢ 2T A

The corresponding dispersion relation 1is

Rxx (R'_m R‘tt"'kij;-) t ij (Rxg Rz~ Rxﬂkgt) . (111-22)
+ R’*(Rﬂi Ryz "Ruk-ﬂ) =0

Within the context of. local linear dispersion relations for waves
in a weakly inhomogeneous plasma of magnetized electrons and
unmag_nebiZed- ions_ this dispersion relation 1is quite genei'al. It

includes wave propogation with arbitrary wave vectors, k, and Kys
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arbitrary polarizations of the transverse fields, and effects due to
density and magnetic field gradients. Therefbre. the dispersion

relation is comblicated. It does however reduce to dispersion
relations which have been derived and solved in less general limits,
The electrostatic dispersion relation may be recovered from the
above dispersion relation by letting the parameter &”pe/0k)2 or
equivalently B,/(ka,)? vanish. Callen and Guest (1973) have shoﬁn that
this is most easily done by transforming the electric field and matrix
Ri,J of equation IIX-15 to a Cartesian coordinate system with one
coordinate parallel to the .direction of wave propagation and two
coordinates perpendicular to it. When this is done it is found that

the dlagonal element of Ri,j which multiplies the longitudinal electric

rield, x (V) k, is

_R‘S'S K';- + RezKa + 2 Ryz KsK2 (1T1-23)

The vanishing of this factor results in an electrostatic dispersion
relation which when €, = 0 is identical to the electrostatic dispersion
relation of Gary and Sanderson (1970). This transformation allows the
general dispersion relation to be expressed as the sum of the above
faétor from tﬁe electrostatic dispersion relation and terms which
represent the effect of transverse fields. The ocoupling between the
two is proportional to Be/(kaa)z.

Recently a dispersion relatien which ;ncludes partial
electromagnetic effects and propogation perpendicular to'af°) (kz = 0)

has been used to study crossfield drift instabilities {(Davidson et,
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al.,1976). That dispersion relation is included in equation ITI~22 and
may be derived from it when the following approximations are made: (1)
Only contribqtions of transverse flelds with extraordinary mode
polarization are allowed, That is E(”z = 0 in equation III=-13. (2)
The lon contribution to Ry, Ryy, Ryy, Ry,, and R,y are dropped. (3)
All terms containing Bessel functions of non zero order are dropped.
(4) The leading term in R, (u/ck)?, 1s dropped. |
Finally a disperéion relation for waves with full electromagnetio
effects in a homogeneous plasma is recovered from equation I1II-22 in
the limit of no gradients, En and eg=0. In this 1imit the
integrations over the v, variable may be done and transform the Bessel

functions into modified Bessel functions, I, with arguments of

2
(kyae) . The result is

Rux = (&gﬁ)l-—\ +(‘%)-E)19, Z( ?.) (I11-24)
HEyEE S ZG) [T I NG
Rey = (&) -G8 12 S [k 26) #5155 7o)

x __,A b
+‘.‘__,E Ia (n.ﬂ-e-K,V.)
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where A = (kyae)2 and - the modified Bessel functions are defined by
I (A) = ™M (11). The resulting dispersion relation may be used to
study full electromagnetic effects in cross. field drift instabilities

in the limit of a homogeneous plasma (Lemons and Gary,1977).



IV. REVIEW OF LINEAR INSTABILITIES

There are five linear plasma instabilities driven by currents
flowing perpendicular to a magnetic field which have been suggested as
sources of turbulence: the ion acoustic, Buneman, electron ecyclotron
drift, modified two stream, and lower hybrid drift instabilities.

The ion acoustic instability requires T, > T; and drift velocities
on the order of the ion sound speed. It propagates in a broad cone in
k space around the direction of Vg the relative electron-ion drift
velocity, with relatively short wavelengths, Ak > ? y and high
frequencies, u;d.mpi, where Ap is the electron Debye length and wy, 1is
the ion plasma frequency. Also it 1is an electrostatic instability
which is independent of ﬁhe magnetic fleld for a sufficiently large
component of wave vector parallel to the magnetic field (Gary,1970).

The linear theory of the ion acoustic instability gives agreement
with turbulence measurements in laboratory experiments in which Te >Ty
(Daughney et al.,1970; Muraoka et.al.,1973; Craig et. al.,19T4).
Recent evidence also indicates this instability is often present in the
earth's bow shock (Rodriguez and Gurnett,1975,1976). These authors
have observed a high frequency component of fluctuations (> 102 H,) in
the bow shock which is predominantly electrostatic in nature, and shows'
a positive correlation witﬁ upstteam Te/Ti and a negative correlation
with upstream T;. These characteristics indicate the ion acoustic

instability is the most likely source of this turbulence.

38
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However as is sometimes the case in the solar wind (Feldman et,
al,, 1976), in the earth's bow shock (Feldman et, gal.s1973), and in
some laboratory shocks (Keilhacker and Steuer,197t) Tg/Ty is not large
enough to allow the ion acoustic instability to grow. In this case
other instabilities become important.

The Buneman instability evolves from the ion aeoysti¢ 1nstabllity
as the temperature ratio is decreased to TB/T;[ = 1 and the drift
velocity is increased to the electron thermal velooity, Vq = Vee In
contrast to the ion acoustic mode the Buneman is g £1uid instability
with frequencies and growth rates on the order of (wpimpe2)1/2.
However, there are other instabilities which do not require 'I‘e > T:l and
have threshold drift velocities lower than those of the Buneman.

One of these is the electron cyclotron (pift Iinstability
(Wong,1970; Gary and Sanderson ,1970; Forslund e, =al. 1970). It
propagates in small fan-like regions in Kk gpage 3in the plane
perpendicular to B{°) and centered on ¥4» with DoPpler shifted
frequencies near negative harmonices of the electron cyclotr‘on frequency
and wave numbers over a wide range, 1/ae kg De Furthermore it
can exist in a plasma with both T, = T; and vy = Vi Therefore it has
been suggested as a source of the electrostatic tyrpylernce observed in
the bow shock (Wu and Fredericks,1972) and in qertain experiments
(Keilhacker and Steuer,1971) when these condition prevaile |

More detailed studies have shown this is not 1jkery- The electron

cyclotron drift instability was found to be crucially dependent upon

the condition k B (Gary,1971) and significant)y reduced by non-zero

beta (Gary,1972). Furthermore it was found %o non-ljipnearly saturate at

relatively low levels of turbulence (Lampe ¢t, ale.,1972). These
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reasons have led Biskamp (1973) to conclude the electron coyclotron
drift instability is not important in shocks. For the same reasons
Gladd (1976) has concluded the same for sheaths.

Other instabilities with low threshold drift veloocitiea vy < v, in
a finite beta, T4 =.Ti plasma are the modified two stream instability
and its generalization in an inhomogeneous plasma, the lower hybrid
drift instability (Krall and Liewer,1971). In a high density plasma,
mpelﬂe >1 they have frequencies near the lower hybrid frequency,
0 /ﬁ:;ﬁ; » relatively long wavelengths, respectively, kae'” 1/2 and
kae n 1, and propagate within an angle of several degrees from ¥,
Since they have drift velocity thresholds below those of the Buneman
and ion acoustic instabilities and do not share the special properties
of the electron cyclotron drift instabilities which inhibit its growth
and influence, they have been proposed as sources of turbulence in
interplanetary and laboratory shocks and post implosion sheaths
(Davidson and Gladd,1975; Lemons and Gary,1977A).

The modified two stream instability has maximum growth prates at
oblique angles in the plane of B and v, (MeBride et. al.,1973). With
the addition of magnetic field and density gradients the modified two
stream can evolve 1into the lower hybrid drift instability whioch has
maximum gréwth rates with kiB,; (Gladd,1976). For this reason the lower
hybrid has recelved greater attention recently. Anomaloga collision
frequencies and resistivities due to the léwer hybrid drift ihstability
in its electrostatic limit have been computed (Davidson and Glédd;1975)

and comparisons with wvalues ., from simulations have been published

(Liewer and Davidson,1977).
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Unlike the ion acoustic, Buneman and electron cyclotron drift
inatabilities which, because of their relatively short wave 1lengths,
can be studied correctly in the electrostatic limit, both the modified
two stream and lower hybrid drift instabilities require the inclusion
of electromagnetic terms in thelr dispersion relations in order to
accurately determine their dispersion properties in a finite beta
plasma. Unfortunately the fully electromagnetic dispersion relation
for crossfield current instabilities is much more complicated than 1ts
electrostatic counterparﬁ. This accounts for the fact that many
calculations of linear growth rates of these 1nstabilities have been
based on electrostatic dispersion relations (Davidson and Gladd, 1975;
Huba and Wu,1976). Some research on the electromagnetic contributions
to these instabilities has been done in the fluid 1imit (McBride and
0tt,1972; McBride et. al.,1972; Detyna and Wooding,1972,1975; Lakhina
and Sen,1973}

More recent work has included kinetic effects, but only part of
the electromagnetic fields in the dispersion relation. Gladd (1975)
has dropped the fluctuating electric field pointing in the direction of
the gradients, E(1)x, while the dispersion relation used by Davidson
et. al, (1977) 1s for propagation only in the direction parallel to
V4 and ignores the ordinary mode electric field, E(1)z.

As derived in Chapter III, the dispersion relation used in this
dissertation i1s very general and has none of these limitations. All of
the instabilities mentioned in this chapter are contained in this
dispersion relation. However the emphasis in this dissertation will be
primarily on studying the dispersion properties of the modified two

stream and lower hybrid drift instabilities since these instabilities
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are most likely to affected by electromagnetic flelds and alone are
present in a plasma in the important regime defined by finite beta,

Ty 'i.oTi, and vy<vg.



V. NUMERICAL METHODS

The dispersion relation derived in Chapter II1 has Dbeen
numerically solved in its most general form for electromagnetic waves
in an inhomogeneous plasma, equations III-21 and IIl1-22, in the 1limit
of purely electrostatic waves, equation III-23, and in the limit of a
homogeneous plasmé, equation III-21 and III-24, for various numerical
values of the steady state parameaters. Numerical solutions are
presented in Chapter VI. 1In this chapﬁer the numerical methods used in
computing these sclutions are reported.

The first step in writing a program to solve these dispersion
relations is to recast the matrix elements, Ri,j' of equations III-22
and III-24 into a form in which =all quantities are expressed as
dimensionless parameters. Among these parameters those with physical
significance can be divided into two groups according to thelr role
within the program, input parameters and output parameters,

The input parameters have been discussed before. Some of thenm
represent the steady state configuration: m /my, To/7y, wpelﬂe, Bar
Vo/Vis Vp/vy, and <> /vy, while the others specify the wave vector
magnitude.and orientation: kae and 9.

Qutput from the program is 1in the form of parameters uhioh
describe the wave solution to the dispersion relation. These are the
normalized frequency and growth rate, respectively, w/QLH and Y/QLH and
parameters describing the polarization of the eleatric fields in the

wave. These latter parameters are ratios of the squares of the

43
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magnitudes of the longitudinal electric field to the total electric
field, ,E(1)L/E(1)totlz’ the electric field component i1in the x
direction to the total transverse electric field, IE(1)x/E(1)tr|2,' the
energy in the transverse field to the total electric and magnetic fleld
energy é%r/é;ot’ and the ratio of the energy of the (fluctuating
electric flelds to the energy in the fluctuating magnetic fields,
fE(1)/B(1)[2. The three homogeneous equations for the field components
Ex(i), Ey(1), and Ez(1) are used to define these parameters in ternms of

components of Ri,j' A straight forward calculation reveals:
z T z
= I _ Kz IR} + Ky |BI™- 2KyKz Rea‘il’z’ﬂ}
(!)
Eret K (IR + TRI* +IB)

(V-1)

, , _ XA
K IBI" 4+ KR+ 2KyKaReal § P, l’} (v-2)

Ew _ § & - "'T--‘}
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'fdf .
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where Py = Ry Ry +Ry 2, Py = Ry Ry #Ro Ryy, and Py = Ry R <Ry Ry ..

It 1is interesting to note a specification of the steady state
dimensionless paﬁameters listed above does not uniquely determine
values of the associated dimensional quantities. For example, oohsider
a homogeneous electron-ion plasma with no drifts. In this case there
are three dimensionless parameters to be specified: T,/Ty, wpe/ne, and

B However, contained in these are four independent dimensional

ae
parameters: T,, T, n,, B,. Therefore care must be taken in
interpreting the dimensional parametefs in terms of dimensionless c¢nes
since more than one interpretation is possible,

In preparation for programing, all infinite sums contained in
expressions III-21 and III-2Y4 were changed to sums with only positive
integers., The elements of the matrix, Ri,J' and its deternminate
D(w,k), were then programmed with Fortran code. The complete Fortran
program used in the solution of equations 1II-21, III-22, and IXI-24 is
given in Appendix C, along with sample input and output.

The computation of the dispersion relation proceeded in the
following order. First the special functions Z(z), I,, and J, were
computed with well tested subroutines accurate to four or five places.
Basically these subroutines use a combination of series and asymptotic
expansions. Then the infinite sums were approximated with a sum of a
number of the first terms in the infinite sum neceaéary for
convergence. In practice the number used was determined by comparing
solutions of the disﬁeraion relation with solutions obtained with an
increased number of terms in the sum. When the two solutions agreed to
four significant figures convergence was assumed, The number reqﬁired

increased with the value of ka, used. Most calculations were for
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kae < 1, in which case four or five terms in each sum were adequate.
Next, the ﬁl integrals were done with a subroutine using Simpson's
formula. Convergence of these integrals was assured by the presence of
an exponential factor exp(-qlzlavez) in the integrand, and their
accuracy was periodically checked by halving the integration step used
and extending the upper limit of the integrals.

The determinant, D(y,K), was then calculated. The =zeros of its
real and imaginary parts, which determine the frequency, W/, and
growth rate, Y/QLH' were found with an iterative root finding procedure
employing the secant method. Usually only four or five iterationa were
necesary for convergence of wlﬂLH and Y/QLH to three place acouracy.
when a root was found the field quantities ]EL/Etotlz' |E /B, ]2, and '
é%r/élot were calculated and printed along with values of frequency and
growth rate. |

The programs which implemented this procedure were usually
employed in the interactive mode of the computers used. Therefore the
input parameters could be entered into the program, the program
executed, and the output parameters received relatively quickly via a
remote terminal. Using the most general dispersion relation, equations
III-21 and III-22, actual computer time required by a PDP-10 computer
to proceas one set of input parameters is about 20 seconds. It is
estimated a total of approximately twenty hours of computer time was
used in the coﬁrse of this dissertation work on both the Los Alamos
Scientific_ﬁaboratory's PDP-10 and the College of William and Mary's

. IBM 370.



Vi. SOLUTIONS

This chapter présenbs numerical solutions to the dispersion
relations derived in Chapter III. It is divided into three subsections
which treat the cases of (A) a homogeneous plasma, (B) a plasma with
magnetic field gradients, and (C) a plasma with both magnetic field and
' density gradienﬁs according to either the shock or sheath conditions.

Of the linear instabilities reviewed in Chapter IV, numeriecal
gtudies of three are presented. Emphasis is initially placed on the
modified two stream instability because 1t is found in a homogeneous
plasma. With the addition of gradients the modified two stream evolves
into the lower hybrid drift instability under certain conditiona., 1In
addition the relationship of these two Iinstablilities to the ion
acoustié instability is explored.

The numerical values of the steady state parameters are chosen and
varied both in order to approximate conditions in physlical plasmas and
to facilate comﬁarison of results with previous numerical solutions of
linear dispersion relations. In all that follows the ratio of electron
and ion masses used is that of a hydrogen plasma, m,/m; = 1836. Other
parameters are usually varied only one at a time. For instance in much
of the present work the values;mpe/ﬂe'= 68 and T,/Ty = 1.0 are used
although variations of growth rates of the lower hybrid drift

instability with both these parameters are included. This value of
Wpe /ne corresponds to conditions in a particular Z pinch shock
experiment (Paul,1969) and to previous numerical work (e.g. Gary and
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Sanderson,1970; Lashmore-Davies and Martin,1973).. As 1long as
”be’ﬁe > 10, which 1s often the case in both space and experimental
plasmas(Table 1-1,Boyd and Sanderson, 1969), its exact value has little
influence on the modified two stream instability(Lashmore-Davies and
Martin,1973). Present results indicate the same is true for the lower
hybrid drift instability. Likewise the condition of equal electron and
ion temperatures is commonly found in both the bow shock and in
laboratory plasmas, although in the former Instance Te/Ti is als=o
sometimes greater than one while in the later it is sometimes less than
one, particularly in the post-implosion phase of linear theta pinches.
The other dimensionless parameters are 8, and v4/vy. B can vary
between 0 and order unity in both the quasi-perpendicular bow shock and
in thermonuclear plésmas. Accordingly the numerical variations will
span this range. In the homogeneous plasma dispersion relation,
equations III-22 and III-24, B, serves to introduce electromagnetic
effects according to the size of the factor Be/(kae)e, while in the
inhomogeneous plasma dispersion relation, equations III-21 and III-22,
it also introduces gradient B effects according to Ampere's Law,
equation II-8., The size of v4q in actual shocks and sheaths can be
estimated from the size of the resulting magnetic field gradients. In
a well diagnosed theta pinech shock experiment (Keilhacker and
Steuer,1971) this drift was estimated to be on the order of a few ion
thermal speed throughout the shock. Drifts of this size were often
used in the numerical calculations. On the other hand vq within post
implosion sheaths may be much smaller, For example, symmetry
considerations require the crossfileld current in linear theta pinches

to approach zero near the axis, implying that there is a region in
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which the electron drift falls below the ion thermal speed. In this
case the crossfield ocurrent instabilities aonsidered here have wave
1engtﬁs and frequenciles on the order of, respectively, the ion Larmor
radius and the ion cyclotron frequency. Ion gyro effects are important
in this regime. Since the derivation of the dispersion relationa in
Chapter III assumed straight line orbits for the iona, the low drift
regime must he avoided. Therefore Vd/vi 2 1 in the following numerical

work.

‘A. Homogeneous Plasma

Results 1n %this section are numerical solutions of equations
I1I.22 and I1I-24. The parameter values ”pe/ne = 68 and T /Ty = 1.0
are used while v4/vy and B, are varied in order to study the
electromagnetic contributions to the modified two stream instability.

‘ Figure 2 shows that electromagnetic modifications to the
dispersion properties of cross field drift instabilities are
significan£ only at wave numbers such that Be/(kae)2 > 1.0, and the
general property that electromagnetic effects reduce growth rates. 1In
this figure m/QLH and T/QLH are plotted versus ka, for v,/vy = 5.0 at
the angle © = 87°. The B, = 0.01 curves are equivalent to those from
the electroétatic dispersion relation, equation IIiI-22, while the
B_. = 1.0 ocurves show the changes due td electromagnetic effects, For

e

ka, > 1.0 there is little difference _between the two ocases, For

ka, < 1.0 the maximum growth rate of the modified tgo stream

instability is reduced, a result which is in qualitive agreement with
the theory and numerical results of Lakhina and Sen(1973), who studied
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Fig. 2. Frequency, m/ﬂm, and growth rate Y/SP.LH, of the modified two
stream instability versus wﬁvenumﬁéf, kae, for 6 = 87°, There are no
gradients, vy = <vp> = 0. Other parameters are vd/vi = 5,0 and Te/Ti
= 1,0, Here and in all subsequent figures me/m1 = 18363 also mpelﬂe
= 68.0 except in Fig. 16.
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the modified two stream in its fluld and low dens;ty(mpelﬂe < 1,0)
limits, Furthermore the instability 13 moved to higher wave numbers
while the real part of the frequency 1s shifted slightly.

Figure 3a shows another important electromagnetic effect. Here
growth rates, maximized over variations in kae, are plotted -against 6
for volvi = 5.0 with g, = 1.0 and 0.01. Figure 3b shows frequencies
(solid 1lines) and wave numbers (dashed lines) which accompany the
growth rates of Figure 3a. For propagation perpendicular to the
magnetic field (8 = 90°) the modified two stream is stable for both
Be = 0.01 and g, = 1.0 as the figure suggests. The maximum growth rate
in the B, = 1.0 curve is reduced from that in the B, = 0,01 curve and
is shifted away from the perpendicular. Furthermore the
electromagnetic (Be = 1.0) modified two stream mode is unstable for
propagation over a wider range of angles than the electrostatic
(Be = 0,01) mode. For these parameters the Be = 1.0 instability curve
actually extends to an angle of about 60°. However the wavelength ﬁf
the instability at this angle is on the order of an ion Larmor radius ,
and consequently ion gyro effects should reduce the growth rate or
completely stabilize the instability in this region(Freidberg and
Gerwin,1977). Nonetheless, even though electromagnetic effects reduce
maximum growth rates of the modified two sStream inatability, the
contribution of this instability to anamolous transport ocoefficients
may become more important since the volume in Kk space in which the mode
1s unstable becomes larger w;th increasing Be'

The mechanism by which,éhe modified two stream instability {is

extended in 6 space away from the direction of the crossfield current



Fig. 3a. Y/QLH, maximized with respect to ka_, versus 6 for

the modified two -stream instability. Electromagnetic effects -

(high Be) :educe growth rateé, shift them away from 0 = 900,

and spread them in space. Other parameters are the same as in
Fig. 2.
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Fig. 3b. Y/QLH (solid lines) and kae (dashed line)
corresponding to growth rates in Fig. 3a. Numbers labelling

curves refer to Be‘
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(6 = 90° ) py electromagnetic effects is the coupling of two distinct
solutions ¢, the dispersion relation. This is 1llustrated in Figure 4
which plots tne dispersion properties of these two soluticns for
Beg = 140 and V4/vy = 5.0, and two different angles of propagation,
8 = 8°%ang o = 81°, The growth rates in the 0 = 82° graph are
representaq with the dotted 1line and are assoclated with the
frequencieg denoted with the solid line. This is the mode which is
also foung in the electrostatic dispersion relation and upon which the
ion acoustje, Buneman, and electron cyclotron instabilities appear. 1In
this graph 1t 1s unstable but close in frequency to a heavily damped
mode whose prequency is represented with the cross-dashed 1line and
growth ratgg With crosses. In the other graph the same symbolism and
parameters opply except that now wave propagation is at 81°, The
frequency or the damped mode at 0 = 82° can be topologically identified
with the poge at 81° which is unstable. At lower values of 8 the
instabllity 1s  also carried by this mode, characterized by low
frequencies,

This pew mode is due to electromagnetic terms in the disperaion
relation gypce 1t can not be found in the electrostatic approximation
to the digpgrsion relation. Furthermore it evolves into a damped zero
frequency pmode when the source of instabllity, Vgr 18 slowly removed
and can bg jdentified with the zero frequency mode which carries the
eleoctron pipror 1nstabiliity.

This jdentification was made by generalizing the homogeneous
plasma digpersion relation and the computer code to include the

possibllity of different electron temperatures in the plane
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Fig. 4. w/QLH and Y/QLH for two different modes at two angles of propa-

gation, 0 = 81° and 6 = 82°. vd/vi = 4.0, Pg = 1.0, and v, ®=-vg = 0.
Also Te/Te = 1,0. In both graphs the growth rates represented by crosses
are assoclated with the frequencies represented with the line of alter=-
nate dashes and crosses. Likewise growth rates of the other mode shown
by dots go with frequencies represented with the solid line., Notice
that when the value of 6 1is changed from 82° to 810, all other numbers

remaining constant, the instability is shifted from one mode to the other.
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perpendicular to the magnetic field, ?LE’ and along the direction of
the magnetic field, T ,. When the temperature aniéotrOpy parameter
T) o/Tj|e Was increased above one, with vq/vy = 0, this zero (freqency
mode beeﬁme unstable at oblique angles. This is the electron mirror
instability, a zero frequency electromagnetic mode driven unstable when
T1o/Te >1/B) o+1 (Sec. 9.8,5tix,1962). It is interesting to note that
when T)./T||, = 2.0 the electron mirror mode is unstable within the
range of angles 60° < 8 < 85°, the same range over which this low
frequency mode extends the modified two sream instability when
vg/vy = 4.0,

The exchange of instability from one solution to the other is made
quickly as g is decreased and for no value of 6 have both modes been
found unstable. This type of phenomena has been studied by Cayton
(1977) and apparently occurs at the crossing in w,y space of the two
solutions to the dispersion relatioﬁ. In any case Figurea 2 and 3 show
that the growth rates and frequencies of the modified two stream
instabllity are a continuous function of 9.

Figure 5 1s addressed to the question of the polarization of the
modified two stream instability.. Here the ratio of energy in the
fluctuating electric fields to the energy in the fluctuating magnetio
fields is shown.versus kag, at an angle of propagation of @ = 89.6° for
Tg/Ty = 10.0, and a drift of vq/vy = 20.0. The high temperature ratio
represents extreme conditions in the earth's bow shock and extends the
range of instability to short wavelengths. The dotted lines indicate
growth rates. Notice again that high beta reduces growth rates only

for Be/(kag)2 1, Solid lines represent the ratio |E(1)/B(‘)|2. The
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ofﬂihaté"h§ié5"éﬁa‘?7ﬁiﬁ'?dbta) for the modified two stream
instability. 6 = 89.6°, vyfv, = 20.0, T/T, = 10.0, and
v, = <vg> = 0,
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size of this ratio is an indication of the electromagnetic nature of
the cross fleld drift instabilities which are predominately
electrostatic at short wavelengths and exhibit progressively greater
electromagnetic properties as kae decreases,

Over the whole rgnge of instability for these parameters the
magnitude of |E(1)/B(1)l varies over seven orders. This wide range of
values 1is in agreement with measurements of this ratio in the earth's
bow shock(Figure 9,Rodriguez and Gurnett,1975). However, they conclude
that purely electromagnetic waves are necessary for the low values of
IE(1)/B(1)|2. In contrast, Figure 5 indicates low values of this ratio
at long wavelengths can be a result of electromagnetioc contributions to
crossfield drift instabilities which are predominently electrostatio at
shorter wavelengths. This fact is emphasized by an examination of the
ratio of transverse fluctuating electric field, lEtr(l)I' to
longitudinal fluctuating electric fields, IEL“)|. The ratio
|Etr(1) / EL(1)| has for all parameters and instabilities investigated
found to be no greater than 1%. Specifically, for the relatively long
wavelength crossfield current instabilities lEtr(1) / EL(I)I = 0,01 at
most, while for the ion acoustic instability IEtr(1) / EL(1)|<< 0.01.
The long Qavelength eroasfield current instablilities contain most of
their energy within the fluctuating magnetic field because of their low.
phase velocity which is suggésted by equation V-4,

The reduction of growth rates by electromagnetic effects over a
range of drift veleocities is shown in Figure 6 where growth rates
maximized with respect to both kae and 0, are plotted versus vd/qi,

Numbers 1labelling the curves in this and in all subsequent figures in
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Fig, 6. Y/QLH’ maximized with respect to kae and 0, versus vd/f1
for various values of Be. Te/Ti = 1,0. Here and in all subsequent

figures numbers labelling curves refer to values of Be.

59



60

this chapter refer to values of Be* Growth rates for the
electroatatic (Be = 0,01) modified two Stream 1nstﬁb111ty agree with
Previously publishéd growth rates in Figure 3 of Gary (1973) and Figure
21 of Lashmore-Davies and Martin (1973). The effect of increasing B,
18 to reduce the growth rates, especially at larger drift velocities.
The dpift Vvelocity at marginal stability is, in this case, about
Vg/vy = 2.0 and is unaffected by B,. Notice also that maximum growth
rates seem t© approach an asymptotic value with increasing drift speed.

This condition is also characteristic of the lower hybrid drift

instability.

In summary, electromagnetic effects are influential only when
Bt,/(kaﬁ,)2 > 1.0. Their effect upon the modified two Stream instability
is to reduce growth pates, move the instability away from the
Perpendicular and Spread the reglon of instability in 6 apace.
Threshold drift speeds are not substantially changed by electromagnetic
offeqts, Furthermore, puch of the energy of the instability is

assogiated With the fluctuating magnetic field.

B, Magnetic Field Gradient

According bto Ampepre's Law, equation II-B, the presence of finite
Be and vg/Vi require a non zero magnetic field gradient drift, <vg>,
although not ‘ necessarily a density gradient drirt, Since the
dispeprsion relation used in section A neglected magnetic field gradient

effects, it 1s not based upon a consistent steady state, However it

has peen econvenlent for isolating electromagnetic effects on a
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crossfield drift instability since they alone are introcduced with
finite B,. '

In the present section magnetic field gradient effecta are
included in the dispersion relation through the electron rorbit
integrals, III-18, although maintaining use of _bhe Maxwellian and
drifting Maxwellian ion and electron distribution functions of the
previous section. This is done by using the dispersion relation of

aquations II1I-21 and 11I-22 with Vn 0. The parameter values

wpe/ne = 68 and T,/T; = 1.0 are also used throughout this section.

The effect of gradient B on the modified two stream mode is seen
in Figure T7a. There both growth rates(solid lines) maximized with
respect to wave number and the corresponding wave number at maximum
growth rate(dashed 1line) are plotted versus 6. Drift velocities of
Vo = 0.1vg = 4.28vy are used. Growth rates with B, = 0.01 are again
essentially the same as those of the purely electrostatic modified two
stream which has maximum growth rates at angles away from the
perpendicular.

Increasing Be to 0.25 and 1.0 not only spreads the inatability in

space as it does for the modified two stream (Figure 3a) but also
moves the maximum instability to the perpendicular direction. This
latter effect has been studied by Gladd(Figure 4,1976) and establishes
the main difference between the modified two stream inatabllity with
maximum growth rates at 0 # 90° and the lower hybrid drift instability
with maximum growth rates at 6 = 900,
Polarization of the transverée fields for the lower hybrid drift

instability is shown in Figure 7b where the ratio of the square of the
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90° a5° 80°

Fig. 7a. Y/QLH (solid line), maximized with respect to kae and kae
at.maximum growth rate (dashed line) versus 0 for Be = 0,01 and 1,0,
Both electromagnetic and gradient.B effects are introduced with finite
Be‘ va/vi = 4,28, Te/T1 = 1.0, and v, = 0. <VB> is finite and is
determined by Ampere's Law, equation II-8,
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80°

Fig. 7b. 'Ex(l),Etr(l)Iz (ordinate axis) versus 0 associated with the
graph in Fig. 7a.
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fluoctuating electric field in the x direotion to the square of the
magnitude of the total transverse electric field, |Ex(1)/Etr(1)|2 is
plotted. Parameter values are the same as in Figure Ta. Since wave
propagation is in the y-z plane Ex is a pure tranaverse field and when
8 = go° the ratio IEx(1) 2y Etp(1)|2 becomes
IEx(1)|2/(IEx(1)[2+|Ez(1)la). Notice in this instance the transverse
electric fields are almost completely ;n the x direotion, This fact
has been exploited by Davidson et. al.t1977) who have derived an
electromagnetic dispersion relation for propagation of the lower hybrid
drift instability in the © = 90° direction by neglecting the
fluctuating E, field. On the other hand, Gladd(1976) dropped Ex(l) and
kept Ez(1) in deriving his dispersion relation and 8o neglested the
moat important electromagnetic contributions to the dispersion
relation.,

The total effect of finite B, on the maximum growth rates 1is not
monotonic, as is further illustrated in Figure 8. Here vq/vy = 3.0 and
the maximum growth rates throughout ka, and O space are shown as a
function of Be. Electromagnetio effects and gradient B effects are
shown independently and together. Electromagnetic effects on the
modified two stream instability are therefore illustrated by the curve
iabelled e-m, VB £ 0. On the log plot Y/R y decreases linearly with
Be‘ In contrast effects of gradient B alone on the lower hybrid drift
instability, denoted by the ocurve labelled e-s, VB = 0, are more
complicated due to the fact that gradient B terms enter into the
dispersion relation, equations III.21 and I1III-22, via resonant

denominators. The instability 4is enhanced by low values of Be and
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Fig. 8. YIQLH maximized with respect to ka  and 6 versus B_. Vd,vi = 3,0
and other parameters are the same as in Fig. 7a. Curves are labelled
according to whether finite Be introduces oply gradient B effects, (e-s,

VB # 0), only electromagnetic effects (e~m, VB = 0), or both electro-
magnetic and gradient B effects ‘(e-m, VB-# 0).

1
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stabllized by higher values. -This result has been studied by Huba and
Wu(1976) who showed that the damping of the electroatﬁtic lower hybrid
drift is an example of electron resonance damping. Neither of these
finite Be effects have proven to be amenable to representation with
simple analytic expressions.

Figure 9 is analagous to Figure 6 and shows growth rates of the
lower hybrid drift instability driven by an ExB electron drift and
magnetio field grédienb for various drift speeds. In contrast to the
modified two stream instability finite Be has greater effect on the
lower hybrid drift instabllity at low drift veleocitlies than at high
drift velocities, and aptually increases growth rates and lowers
thresholds from values in the Be = 0 case.

In summary, gradient B effects transform the modified two stream
instability into the lower hybrid drift instability with maximum growth
.rates in the perpendicular direction, enhanced growth rates and reduced
“threshold drift speeds. Electromagnetic effects are almoat completely

'carried by the fluctuating E, field.

C. Density Gradient

In this section solutions to the dispersion relation in its most
general form, equations III-21 and III-22, are presented. The
magnitude of the densiby graéieng drift, v,, is now determined in two
different ways: the sheath condition, v, = ~(To/T4)vy, and the shock

condition, Vp = <vp>., Figures 10a and 10b show a comparison of the

consequences of the two conditions. Figure 10a shows growth rates



61




68

maximized with respect to ka, as a funetioh of © for' vq/vy = 4,0 and
Be = 0.25. The corresponding frequencies and wavenumbers are shown in
" Figure 10b. Here and in the rest of this section “pelﬂe = 68 and
Tg/T; = 1.0 unless otherwise indicated.

The dotted line in Figure 10a 1is the modified tﬁo stream
instability ((VB> =V, = 0). Characteristically 1ts maximum growth
rate 1s in an oblique direction., Maximum growth rates are shifted to
the perpendicular direction when non zero VB 1s allowed as shown by the
cross-dashed curve. Finally, the solid lines represent the addition of
the density gradlent drift, which is added in such a way as to keep the

total orossfield drift, vy, at the constant value of v4/vy = 4.0. This

requires drifts of > = vy = (Bg/2)vy = vy/2 and
Vo = (14Bg/2)vy = 5vy for the shock condition and <vg> = (B,/2)vy,
Vp = ~(T9/T1)Vd/(1+Te/T1) = -2.0vi,and Vo = Vd/(1+Te/Ti) = 2-0\?1 for

. the sheath condition. What happens depends upon whether the density
gradient is in the same direction as the magnetic field gradient (shock
condition) or in opposite directons (sheath condition). In the former
case the maximum growth rate is reduced and moved back to oblique
angles, essentially restoring the modified two stream instability. 1In
the latter case the maximum growth rate 1is slightly enhanced and
malntained in the perpendicular direction.

Two points should be made in connection with this graph. First,
the maximum growth rates of the instability when the shock condition
obtains are for oblique propagation for all values of Be and v4/vy

considered in this study. Apparently, magnetic field and density
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Fig. 10a. Y/Q, maximized with respect to ka, versus 8. valvy = 4.0,

Be = 0.25, Tel'l‘i = 1.0, Different curves show growth rates when v, "

<vp> =0 (dotted line)' and v = 0,'<vB> = Bevdlz (dot~dashed line).
The solid line with the larger maximum growth rate corresponds to
v, given by the sheath condition while the golid line with the smaller

maximum growth rate corresponds to v, = <v,>, the shock condition,
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Fig. 10b, w/QLH (solid lines) and wavenumbers at maximum growth rate
(dashed lines) for sheath and shock condition cases in Fig. 10a plotted

versus 8,

15
Ka,
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gradients of equél magnitudé pointing in opposite di#eotion restore the
modified two stream instability.

Secondly, under the sheath condition, the instablility present is
usually the 1owér hybrid drift instability which 18 no longef extended
in 8 space away from 6 = 90° as it is under the shock condition and is
confined to a narrow angle of about 1° from the perpendicular.
Analysis of thé electrostatic dispersion relation has shown that the
modified two stream instablility has maximum growth rates at angles
corresponding to cosb = k,/k = (me/mi)1/2 (6 = 88.7%)(McBride et,
"al.,1972), while in section A of this chapter it was shown that
electromagnetic effects move the angle of maximum growht rate to
smaller © and spread the instability in 60 space(Figure 3a). However,
as 1llustrated in Figure 10a, the density gradient according to the
sheath condition reverses these results by confining the instability to
an even smaller range of angles about the perpendicular direction than
the electrostatic modified two stream.

The role of the density gradient drift in determining the extent
of oblique propagation is indicated in Figure 11. Here the angle,
81/2: at which the growth rate falls to one half of its maximum value
as  decreages 1s plotted versus vn/vi. Parameters values are the same
és those in Figure 10a except that now the density gradient is added in
arbitrary amounts in such a way as to keep vd/vi = 4,0, The exbremé
left hand point in the curve corresponds to the sheath condition while
the extreme right hand point corresponds to the shock ocondition. The

anvi at which the instability changes from the lower hybrid drift to
the modified two stream instability is indicated by a solid vertical
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Fig. 11. Angle at which y/ﬁw falls to one half of its maximum

value as 6 is decreased, 61 /'2 s Versus vn/vi. Other parameters are
held constant at vd/vi = 4.0, Be = 0.25, and Te/T:L = 1,0, Leftmost
point on the curve corresponds to a value of vnIv:l which satisfies the
sheath condition while rightmost point on the curve corresponds to

the shock condition. The solid vertical line represents the mini-
mum value of v /v at which the maximum growth rate is at @ = 90°,

The horizontal dashed line indicates the 8 1/2 of the wmodified two
stream instability in its electrostatic approximation with no

gradients and other parameters remaining the same,
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baf. The curve shows how density gradients in the d;rection opposite
to the magnetic field tend to confine the instability in the
_ perpendicular direction while the opposite trend is evident when the
density and magnetic field gradients are in the same direction. These
results are in qualitative agreement with similiar plots by
Gladd(Figure 3,1975).

For comparative purpcses the 81,2 associated with the modified two
stream in its electrostatic limit with no gradients and a drift of
vq/vy = 4.0 is provided by the horizontal dashed 1line. Notice that
thlis value ascribes more oblique propagation to the instability than is
present when the sheath condition is applied.

The degree of wave propagation in the oblique direction is crucial
in determing how much a cross riéid current instability contributes to
anamolous transport along field lines. For example, Caponi and Krall
(1975) have determined that the ratio of the anomalous heat production
frequency produced by turbulence driven by ecross fleld drift
instabilities along field 1lines v“ and across  field 1lines V,,
Vi /v, , is proportional to the ratio kzzlkl2 where k, and ki are
values of wave number components averaged over the region in k space
containing the instaiblity. Therefore Figure 11 provides a measure of
the size of \ﬁlhﬁ and shows that its magnitude depends upon the
magnitude and sign of the dengity gradient drift,

With respect to the shock case it is important to oconsider the

relationship and relative importance of the modified bwo‘stream and ion

acoustic Instabilities since Both of these may bse aotive in a shock

when Tg> Ty, a condition which 1s not unusual in the plasma of the
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earth's bow shock(Montgoﬁery et.al.,1970). In Figure 12 To/Ty = 10,
vq/vy = 20, and By = 0.25 are used with the shock condition. In thias
illustration, 6 is fixed at 85° and the wavenumber is varied so that at
kae <1 the modified two stream instabllity is present, but as ka,
increases, the ion acoustic instability appears.

The three curves shown in the figure represent the electrostatic
approximation (line of open circles), fully electromagnetic results
without gradients (dotted line), and fully electromagnetic results with
gradients determined by the shock condition (solid ocurve). The
modified two stream instability at ka, < 1 1is influenced by both
electromagnetic effects and by gradients. The ion acoustic instability
at ka, > 1, however, is not changed by either electromagnetic effects
because of its short wave length or by gradients., The latter fact haﬁ
previously been noticed by Gary(1970) and is also due to the relatively
short wavelength nature of this mode.

These results are extended to other drift velocities in Figure 13
where growth rates as a function of the electron drift speed are
plotted at T./T; = 4.0 for both the ion acoustic instability (dotted
lines) and the modified two stream mode (solid 1lines). Like the
modified two stream instability with no gradient effects in Figure 6,
growth rates of this instability in the present case are reduced by
finlte Bs ©effects more at higher than at lower drift speeds, More
significﬁntly Be does not substantially affect the 1lon acoustie

instability. This coupled with, the fact that estimates of the

anomalous resistivity due to. turbulence produced by the ion acoustic

instability are much greater than estimates due to turbulence produced
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Fig. 12. YIQLH versus ka_ for 8 = 85°, vd/v1 = 20, Be = 0.25, and

TelTi = 10. The line of open circles is the electrostatic approxi-
mation with v, = <vB> = (03 the dashed curve is the electromagnetic
dispersion relation also with no gradients; and the solid curve in~-
cludes electromagnetic effects and v, =,<vh> = Beva/2. Both the
modified two stream and ion acoustic instabilities are present.
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Fig. 13. Maximum growth rate, YIQLH, when the shock condition is
satisfied, as a function of electron drift speed vd/vi for Be” 0
. and 1.0, Te/Ti = 4,0, The solid lines represent the modified two

stream instability; thé dotted curves, the ion acoustic,
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by the modified two stream instability (Lemons' and Gary,1977AA)
suggests .that in high T./T; shocks the ion acoustic is the dominant
instability.

In theta pinch sheaths and future thermonuclear reactors T,/Ty <1
is the more likely condition. Therefore in these applications the ion
acoustic instability need not be considered and the lower hybrid drift
is probably the most important instability. Maximum growth rates of
the lower hybrid drift instability are shown in Figure 14 as a function
of vd/vi for various B, when the sheath condition is satlsfied. Al}
these growth rates occur for 9§ = 90° and substantially agree with those
of Davidson et. al. (Figure 4,1977). Increasing 8, decreases growth
rates monotoniecally for all vd/vi although the effect is larger at
relatively small values of the drift speed. This lead Davidson et,
al. (1977) to suggest that finite B, effects may be able to stabllize
the lower hybrid drift instability in the low drift velocity regime,
vq/vy < 1, characteristic of post implosion theta pinches, However, an
accurate determination of the Be necessary for stabilization requires
consideration of ion magnetic effects for reasons already discussed.

Figure 15 also concerns the lower hybrid drift instability under
the sheath condition. Like Figure 5 for the modified two stream
instability, it plots growth rates(dotted lines) and |E(1)/B(1)]2
{solid 1line) versus kag. Parameter values are Bg 3 1.0 and

vd/vi = 8,0, As in Figure § the parameter which determines the extent
‘to which the energy of the instability is contained in the magnetio .
field is the wavenumber. However in contrast to the modified two

streanm instability, the lower hybrid drift 1is predominately
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Fig. 14, Maximum growth rate of the lower hybrid drift instability
as a function of vd/vi for Be = 0,01, 0.25, and 1.0, The sheath
condition holds, v _ = -(Te/Ti)vo. *Te/Ti = 1,0,
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Fig. 15, Plot of |E(1)/B(1)|2 {solid line; left hand ordinate
axis) and Y/RLH (dotted line) versus kae at 6 = 89,5° for the
lower hybrid drift instability when the sheath condition is
satisfied. vd/vi = 8.0, Be = 1.0, and TeITi = 1,0,
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electromagnetic at kag = 1.0. This suggests that nonlinear theories of
the lower hybrid drift instability based on the electrostatic
approximation (Davidson and Gladd,1976) need reexamination.

This section concludes with two figures illustrating the general
effects of different values of uwye/Q), and To/Tj on the lower hybrid
drift instability when the sheath condition holds. Throughout these
variations the angle of maximum growth rate is always 90°. In both
figures Vo/"i = 4,0, the growth rates are represented by solid linea,
and wave numbers by dashed lines.

wpe/ﬂe is varied over three orders of magnitude in Figure 16. For
many space and thermonuclear plasmas of interest wpeﬂﬂe 2 10 (Table
i-1,Boyd and Sanderson,1969). In this parameter regime growth rates
change by less than one percent from w ./, = 10 to Wpe/Al, = 100. This
result holds for the electromagnetic (B, = 1.0) as well as the
electrostatic (B, = 0.01) instability.

In Figure 17, wpe/fRe 15 set equal to 68 and T./T; is changed.
Growth rates increase with Te/Ty although the effect 13 not strong.

The dispersion properties reported in this section can be
summarized by dividing them into those assoclated with the shock
condition which implies the presence of the modified two stream
instability and those associated with the sheath condition and the
lower hybrid drift instability. The modified two stream instability
has substantial oblique propagation. Its growth rates are reduced by
finite R, and therefore have growth rates much less than the ion
acoustic instability in a shock with T > T; when both modes are

unstable. The lower hybrid drift instability is confined to a
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Fig. 17. Variation of lower hybrid drift instability maximum growth
rates with Te/Ti for Be = 0.01 and 1.0. Sheath condition 1is satisfied
and vd/vi = 8,0,
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relatively small cone of propagation aroung the perpendicular to the
magnetic field. Its growth rates are also reduced by finite Ba
especlally at low drift speeds. The major portion of its energy 1is.
contained in fluctuating magnetic fields and variations in parameters
' wpe’“e and T,/T; make little difference in its dispersion properties.
Sincé the ateady‘state electron distribution function used in this
dissertation does not include an electron temperature gradient, results
from othér work on this gradient will now be summarized. In general an

electron temperature gradient causes a macroscoplc drift,¢xgﬂ given by

V.= CBXVT
e p*

When the geometry of equations III-1 is used ygp may either add to or

aubtract from the ExB drift depending upon whether or not thg
temperature gradient respectively opposes or is in the same direction
as the magnetic field gradient.

In a perpendicular shock if the plasma adiabatically heats as it
passes through the magnetic gradient, the temperature gradient, as well
as the magnetie field and density gradients will point in the same
direction, Priest and Sanderson (1972) and Allen and Sanderson (1974)
have demonstrated.that in this case the temperature gradient enhances
" the growth rate of the ion acoustic instability. Huba and Wu (1975)
and Davidson et. al. (1977) have demonstrated the same result for the
lower hybrid drift instability.

In plasma sheaths characteristic of various magnetioc confinement

devices the temperature gradient could conceivably point in either
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direction depending upon whether the major heat loss 1s across or along
flield 1lines. When the temperature gradient is in the direction
opposite to the magnetic field, as might be the case in a toroidal 2
pinch where the only heat loss is across the magnetic field, growth
rates of.the lower hybrid drift instability are reduced (Davidson et.
al.,1977). More detailed statements concerning the role of temperature
gradients 1in cross field drift instabilities must wait further

research,



VII. SUMMARY AND CONCLUSIONS

The results of this work include both dispersion properties of
croﬁs field current instabilities and conculsions concerning the
consequences of these properties for shocks and sheaths, In this
chapter these results are summarized and discussed.

Several statements may be made summarizing dispersion propertles
of crossfield current instabilities found in the course of this study.
First, electromagnetic effects are important only when se/(kae)2 > 1.
This has been demonstrated by the analytical work of others (e.g.
Callen and Guest,1973) and confirmed by the present numerical results
(Figures 2,3,and 13). In general, electromagnetic effects reduce
growth rates (Figures 6,8,13,and 14) and spread the direction of
propagation of the instability away from the perpendicular (Figures 3a,
and Ta) although the 1latter effect applies more to the modified two
stream instability than to the lower hybrid drift instability (Figure
10a). In the absence of temperature gradients the orientation of the
density gradient with respect to the magnetic field determines the
direction of propagation of the instability (Figures 10a and 11). When
these two gradients are in opposite directions maximum growth rate
occurs for propagation in the oblique direction Implying the modified
two étream instability. EPen the gradients are in the same direction

the instabllity has a maximum growth rate in the perpendicular

direction implying the presence of the lower hybrid drift instability.

85
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Both of these instabilities have a sSubstantial part - of their field
energy in the fluctuating magnetic field.

Finite beta effeats are different for the modified two streanm and
lower hybrid drift instabilities. On the former they reduce growth
rates produced by high drift speeds, V4 > vy, more than they reduge
growth rates near marginal stability, V4V v4 (Figures 6 and 13). 1In
contrast, lower hybrid drift instability growth rates are reduced more
at low drift speeds than at high ones (Figure 14),

Unlike the lower hybrid drift and modified two  stream
instabilities the ion acoustic instability is influenced neither by
electromagnetic or magnetic field and density gradient effects (Figure
12). In a Tg>T; shock it competes with the modified two stream
instability. In this situation the ion acoustic has higher threshold
drift speeds bubt also larger growth rates than the modified two stream
(Figures 12 and 13),

These dispersion properties suggest several conclusions regarding
wave and Wwave progesses 1ip the earth's bow shock, The conclusions,
however, are made tentatively and are meant to provide direction for
further research.

(1) The modified two stream Iinstability can cause appreociable
growth in the bow shock, An instability driven by crossfleld ourrents
within the bow shock must grow for a period of several 9-f01d1n8 times
while it is in the shock in order bt© have any influence upon the
transport Droeess within it. Therefore the number of e-folding times

of an instability in the bow shock, 0, 18 related to the instability
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growth rate Y, the bow 3shock width, AL, and the solar wind speed
parallel to the shock normal, vg,, by n = ALY /vgye

In order to arrive at an estimate of the size of n, values for AL
and vgy are taken from four observations of the quasi perpendiocular
laminar bow shock reported by Greenstadt et. al. (1975). In these
cases AL/vg, was a measured quantity with values spanning .26 to 1.4
seconds, while the average magnetic field in ¢the bow shock took on
values ©of 7.5 to 13.5 gammas. The average magnetic field 1s necessary
to determinefhui, the frequency which characterizes the size of Y.
Consulting Figure 13, ¥y = Q,y/2 is chosen as a representative growth
rate of the modified two stream instabllity in a finite beta shock.
When the above numbers are used the result i3 T<n<i7., Sincen =7
corresponds to a 1000 fold increase in field amplitude, the modified
two stream instability may undergo appreciable growth in the bow shock,

(2) When T > T; the ion acoustic mode is the most important in the
bow shock. At large temperature ratios, the 1lon acoustic threshold
drift speed 1is well beow the electron thermal speed. In this regime,
Be has little effect on this instability and the eleoctron cyclotron
drirt dinstabllity is probably wiped out by its very narrow range of
propagation about the perpendicular. We disagree with the conclusion
of wu and Fredricks (1972) that g = 1 "practically excludes" the oroas
field ion acoustic instability. Their conclusion was based on the
assumption that kaefﬁ1 wasm necessary to obtain this mode; Figure 12
illustrateé that this is not the case.,

Comparison of the ibn acoustic with the modified two stream

instability involves more detailed arguments. Figure 13 shows that the



88

growth rate for the former mode increases much more rapidly after
threshold than that of the latter instabllities, Figure 3 of Rodriquez
and Gurnett (1975) shows that the increase in electric fluctuations for
the 1on acoustic frequencies through the shock 1s several orders of
magnitude greater than that for the lower frequencies.

In certain cases a shock width may be determined by the drift
velocity threshold of a cross field current instability according to a
criterion due to Manheimer and Boris (1972) which states, in effect,
that the nonlinear action of turbulence due to a current-driven
instability 1s to maintain vq above, but close to, an instability
threshold. This drift may ¢then be related to the magnetic field
increase across the shock AB and shock width AL via Ampere's Law.
Morse and Greenstadt (1972) have used this eriterion and the above
mentioned data to determine that at least in these cases the bow shock
width 1is consistent with threshold drift speeds of the ion acoustic
instability. This justifies our use of a growth rate of Y = QLHIE
for the modified two stream instability calculation (e.g. Figure 13)
but raises the question of why the threshold vq of the modified two
stream inatability,‘ which 1s lower than that of the ion acoustio
instability, does not determine the bow shock width.

The answer to this question may have to do with the different ways
in which these 1nspabilities scatter particles. If the wave-particle
interactions due td an instability of low threshold (the modified two
stream) are not sﬁrong enough to significantly slow the eleotron drift
speed, the macroscopic forces in the shock will continue to increase vq

until it reaches the higher threshold of a stronger instability (in
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this case, the ion acoustic), This conjecture is supported by a
comparison of the anomalous resistivity due to these instabilities
(Lemons and Gary,1977B).

(3) Rodriguez and Gurnett (1975) have suggeated that the low
values of the ratio |E(1)/B(1)|2 observed in the bow shock are dus to
electromagnetic whistler modes. This could be the case. However
observations are also consistent with the possibility that these
fluctuationé are due to crossfield drift instabilities at long wave
lengths (Figure 5).

With regard to plasma .sheaths these results have several
implications which in turn point the way to future studies,

(1) The lower hybrid drift instability appears to be the most
important instability in the sheath configuration (Figure 10a), as
previously indicated by Gladd (1976). Indeed, Figure 10a shows that
the modified two stream instability is not present when density and
magnetic field gradients point in the same direction. The effects of
electron temperature gradients may be important in this context and
need to be studied before a more conclusive statement can be made.

(2) Finite beta effects reduce growth rates (Figures 8 and 14) of
the this instability and also raise threshold drift velocities. This
cénculsion was earlier suggested by Davidson et. al, (1977).
However, an investigation :pf this possibility requires working in the
low drift vélocity régime, Vq < Vi in which u)daﬁﬁ and kai " 1 where
ion magnetic effects must ba”?onsidered.'

(3) Electromagnetic fiq}ds and thelr effects are an important part
of the lower hybrid drift instability. Fluctuating magnetic fields
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contain most of its energy and therefore need ﬁo be included in both
particle simulations and theories of anomalous transport. Among the
latter, in particular, are those theories which the use the Fowler
bound method by assuming a limited amount of free energy in the plasma
and relating this energy to the energy of the fluctuating fields
(Fowler,T.K.,1968). Amplitudes of the fluctuating fields driven by the
lower hybrid drift instability in a finite beta plasma calculated by
this method will be in error by orders of magnitude unless the energy

of the fluctuating magnetic field is taken into account,



VIII. APPENDIX

‘A, Steady State Fluid Eguatjons

The choice of fields and distribution functions 1in Chapter 1II,
Steady State, and thelr relationship to shock and sheath configurations
may be motivated from an examination of the steady. state [fluid
equations for a single specles of an inhomogeneous plasma. In the
following geometry, field and fluid quantities are allowed to be
functions of only one Cartesian coordinate, x, magnetic field lines are
straight lines with unit vectors pointing in the 2z direction, and

electric fields and flow velocities ¥V lie in the x-y plane:
3 o )
X (dx ’©,
B = (OJOIB)

(EX)E')IO)

= (Ux,Uy,0)

< m
I

Using this geometry the first two velocity moments of the steady state

Vliasov equation yleld;

(, a Ux (A-1)
IX
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%i(nT_._ +mav) = qn ( Ex +U_‘:_Ié§) (a-2)
%‘x(m“u" U‘.‘) =qn (Ey- U."_CB) (a-3)

Equation A-1 is the time independent continulty equation while
equation A-2 and A-3 represent momentum balance. In addition the

steady state Maxwell equations require, in a two fluid electron=ion

plasma,
d E.=O0 (A-4)
IX 9
g__’.‘ B — ‘-l_TéE (neu..‘e——ni Uyi) ,_ (A=5)
O = (NeUge -1\ Uxi) (A-6)
a% = Ywe (ni-ne) (A7)

Here equation A-4 is implied by Faraday's Law, equations A-5 and
A-6 by Ampere's Law and equation A-7 by Poisson's equation. Subscripts
"i" and "e" refer respectively to ion and electron.

The steady state sheath i1s characterized by the absence of any
plasma flow through the magnetic i1nhomogeneity, In the present
notation this flow is represen;ed by Vx. According to equation A=3 the

vanishing of V, also requires a zero Ey. Therefore the sheath limit is
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y
and A-6 are identically satisfied, Equation A-2 may then be solved for

attained by taking V, = 0 and E, = 0. In this case equations A=1,A=3,

the drift velocity Vy

V‘j:: — CEx + T g_ nnTy (A~8)

A
QO m JIX

When expressions for the steady state fielda, equation II=-1, are
used and temperature gradients are ignored, the resulting expression
for the electron drift from the fluid equation A-8 is identical to that
implied 'by the electron distribution function constructed from
constants of motion in Chapter II, equation II-3. Equation A-8 also
applies to the ions within a sheath if they have had time to respond
sufficiently to the fields.

When the pressure gradient acting on the ions is balanced by the
electric field in the x direction the ions are '"electrostatically
confined". ‘In this limit , Vy = 0, and in the absence of temperature

gradients equation A-8 for the ions reduces to

C_E_)_c — Wi 4 Imn
B Q;m; 9X
Wy, = = Tai N, (A=9)
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which is identical to equaty gy <7 in chapter II, ‘

A consistent shock ﬂteady state with suffioient ai.mpucity for yse
as a basis for a linegp diapersion relation has not Yet baen
constructed, The shock %nfigurarion (Vx # 0) 1s in general Much nope
complicated than that of the aheath and consequently ... be réePresented
by the steady state in chaptep I only under 36very) app,q:m:!.:mecf:.imm.
Here we identify these ADroX mat 4 onm.

In the 1imit of masgleny oleotronss the electpyn p1u1d equations

A-1 through A-U can be Feduced ¢q ¢pe rollowing fQuationg

N Uy = Const (A~10)

BUx = Const, (A~11)

Uy= - CE, To 3 In T, (a-12)
3 Bt e Ix

Uy = cky (A-13)

Equations A-10 and A<ty imply equal electron density and field
gradients, a result idem‘-iﬂed as the "shock conditignn 44 Chapter 1x,
while equation A-12 ia identiaal to A-8 and equatigy 11-3.

When the ion thermy) veloosty 1s amall COlpared to the flow
velocity, Ver and othep dripy velocities’ a tondition wbich 1a pot
always met in this dissef‘tation the cold ion limip (Ty = 0) becomes

valid. Then when charge “Uetr‘augy n, = Nis 13 required the 1on flyiqd

equations reduce to
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Uy = O . (A-14)

MUy dUx — q Ex (A-15)
IX

Ug = CEy /B (A-16)

Equation A-16 is identical to A-13 and emphasizes the fact that
the ions and electrons flow through the shock at the same speed.
Equation A-15 indicates that the E, field serves only to slow down the
ions as they pass through the shock while A-tl says that no macroscopic

ion drifts are driven by gradients.

B. Neglect of Small Terms in Orbit Equation

The neglect of terms in the orbit equations, III-17, proportional
to trigonometric functlons and erl/ﬂe is reasonable because of the way
in which these terms enter into the dispersion relation. The
dispersion relation formed with equations III-6 and III-13 contains

integrals of the form

w ob ) P

thb dr ¢ qté,T)
o o | ‘
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where g(¢,7) 18 a functidn of the time parameter T and velocity
variable ¢ which 1s determined by the zero ordef distribution funotion,
while the vector x'-x 1s determined by the orbit equations. From the
‘complete orbit equations through first order in qul/ﬂe, III-17, the
above exponential function would contain terms to first order in

EBYLAQe which are both oscillatory

1 KyVa i ( €oVe sind
€ e ( Qe )

1€aKyVi' Gin Q6T
€

and secular in QeT

€ 3aF

For weak gradients, EBVL/Qe << 1, as 1is considered in this

dissertation the exponentials may be expanded so that

1KyVy. sin{ €sVe sind - .
€ e ( e );\;-__ | + Véa"a\’l’ sing
Leo*
1Ky EgVL sin QT : -
€ 200 = |+ L'iEJl!‘,‘lL SINONeT

20%



-Therefore when integrations over ¢ and T are performed the sin¢ and
8in 6T terms are small compared to the secular term.

These expansions and integrations have been done explicitly in the
case of the electrostatic dispersion relation. Numerical eyaluation of
the resuiting dispersion relation has revealed that the contribution of
the oscillating terms to first order in egv,/Q, treatqd in this
approximation are indeed negligibie. Although contributions of these
terms to an electromagnetic dispersion relation have not Dbeen
caleulated it is felt that results will be no different from those
based on an electrostatic dispersion relation since the 1integrations

involved are formally similar.

C. Computer Programg and Sample Output

Below are 1listings of the computer programs and output discussed
in Chapter V., First is a program solving the dispersion relation,
equation III-22, with the matrix elements Ri,J assoclated with gradient
drifts, equation III-21., This is followed by a similiar program for
the homogenecus case, equation III-24. A typical page of computer

output for the latter program completes this appendix.
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IONS:  HOTs UIHMASMETIZED

ELECTRONS:

HOTs MAGHETIZED

E CRDSS Es GSFRAD Es AND GRAD M DRIFTS

PERPEMDICULAR TO E
WAVES: DOBLICUE PROFPAGHTION
REOUWIRES SUQERDUTIMES: PIDFsFCFCNs(BJ, CASF» ZERRCH, OUTPUT

COMMON €3y ZERDy HEMAXsNTRIALy INDCs MELS

COMMDON-PARAM, BETAE, TEOTIsMEOMT» YEOVIs VO VHy VB»WRATIOY THETA
COMMOMN-FIELDR~ FHASQs EXOESR THOTOT» EDRIN

DIMENSION FRCTP(SOM +FACTM (SO0

DIMENSION BSJC10M «OBREJC10G> s BSUSQ <1005 » ELOWCL 00D

REAL MEDOMI

COMPLEX
COMPLEX
COMPLEX
COMPLEXR

COMPLEX
COMPLEX
COMPLER
COMPLEX
COMPLEX
CODMPLEX

Sy SS0+SHEs ZERDZEROL D » IMAG« LAMEDA

2ERG1+ 21,021, DD21

ZARGEP C10DY s ZEPC100) s DZEP (1 IJI:I) s INZEFP (L 00D
ZAPGEMCIODY s ZEMCIO00 s DZEMCI 00D 2 DDZEM LT OO
RHEMsRYY s RZZs RRY s RYZ s RH2

UK Y ZZy XY s 52 Y2

HEGCSHD o YYG (SO s ZZG GO » XYG (SO0 s XZ2G SO » YZG5 (SO0
HRICSOO0 2 YISO s 221 CS000 s XY IS0 o XZ2T CSQ02 o YZI (DO
FlsFP2sFPICP2C .

CHECK

DATA STOP-/1.0 E-27
IMAG=CMPLX (), 0s 1. 02

NEMFX=4

PLASMA PARAMETERS

NELS=2

MEOMI=1.
TEOTI=1.

02674
0

VEOVI=EORT (TEOTI-MEOMI>

BETRE=0O.

YH=0.0
VYh=4.0

a5

URATIO=5%
VRSRA=HFATIO«WFATIO

S TYPE 210

810 FORMAT (~S5¥X» 1AHENTER DATH-D
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C

a0

GOO0O0O0

99

READ (S £1SYNELS
815 FORMAT CI1Y
READ (S £205 VD EETAEs THETR» HEMAX
320 FDRMATCIFLID. G- IO
RETHMO=RETAE~-Z. 0
VR=EETWOe%Li
VN==TEDOT IV (1+TEOTID
vO=YDh+VH
vOo=v0-YEOVI
Yi=VH-YEOVT
VE=YER/YEDVYI
COSIME=COINCTHETRY
COSO=COZINE«COSINE
SIHE=SINDC(THETH)
SINEQ=SIHE*SINE
TAN=SINE-/COSIHE
TAMSO=TANeTHN

FIRST GUESS FOR WAYE HUMEER C AMD FREQUEMCY S
20 READCS220> CETHRT«S» DOy NPRINT
830 FOFMATC(4F10s 12D

INCREMENT WAVE NLUMEER BY DC WITH DO LOOP
DO &G0 INHDC=1+HPRINT
£=CSTART+ (IHIC~1>eDlC
CI0=CeC
NTRIAL=~1

CALCULATE ELEMEMTS OF DISPERSION FELATION

30 SEIN=3Ze8
ZARGI=SOVEOVI~ {1.4142130D
CALL PIDF (ZARGI»ZI» D21
DDZ1=-2. 0¢ (ZI+ZARGI+DZID
R¥UX=SSOeEETUD/NRTO-CEO+MEDM] ¢ BETHOSZRRG 1«21
RYY=SSO¢EETHOAWRSG~CSRCOZR+MEOMISEETIDZARG ¢ (COSOZI~SINEGe

g SZARGIM +3¢EETHD® <VE-YH) ~ (CeITNED +EETWO® (YO~-VN) ¢ (VD= VB)
R2Z2=ISOSEETHOAWREO-CSHeS THSO+MEOMI e BETWOSZ2ARG]
E ¢ (SINSQeZI-COSNeDZI*ZARGIY

RYZ=COSINE®ZINHE® (CSD+MEOMI«EETHOSZARGI oDDZ1 72, O
LAMBDA= (S~SIMEeCe (VO-YHI > #(1.414213eCeCOSTHE)

INTEGRATION OF V-FERP INTEGRALS
STEP S1ZE: H
UPPER LIMIT OF INTEGRATION: YMAX
INTEGRATION YARIAELEY VY
H=0. 035
IF(THETR.GE.&9.51>H=0,05
YMAK=5., 0
IHMAX=YIMAX H+1, 0



100

791, 140 _
S1 € 1D LOOP TO PREPARE VECTOR WITH VALUES OF

92 PO 90 IH=1s INMAN INTEGRANDS
93 y=He CTH-1)

99 ySp=yey

95 BARG=SIHEeCeY

96

97 C CALCULATION OF ALL FRIED-CONTE AND BESSEL Funcrigns WITH DO LOOP
23 HBMAP=NENAY

99 IF ¢HEMAX . EC. 1D HEMAP=NEMAX+ 1
100 oo 65 MHH=1sMEMAP
101 H=HN-1
102 CALL EESJCEARG, HyESICHMY » 1. E~3 1000
103 ESJSE (HMY SBSJICHMD e B (HIHD
104 YFACT= CYO-VEeYIle,5)
105 FACTH (HHD =YFRCT=Hs (e STHED
104 FACTP ¢HMY =VFACT+N/ ¢CeSTHED *
167 ZARGEP MMy = (S+H~CeSITHESVFACT) (1. 41421 3eCecOs INED
108 ZARGEM (HMD = (S-N-CeSINESVFACT) # (1.414213eCecOs I HEY
103 CALL PIF CZARGEP (MHY s ZEP (HHY » DZEP (M) )
110 CALL PDF CZARGEMCHMY » ZEM (NI » DZEM (HND )
111 IF CHH=12 655 55050
112 &0 DBESJC1>=—BZJ(&)
113 IF CRAPG.ER, 0, D EARG=1, 0 E-5
114 DRSS CHMHY SESJCHH~1) =He ESJ (HN) ~BARG
115 65 CONTIMUE
116 C
117 C CRLCULATION OF INTEGRANDS
118 C 2grD ORDEF <HH=1> EBESSEL FUNCTION PART
119 YWR=DETIL1DeDIES 1) e ZEP 1D ’
120 YY=ES. IS0 1) ¢ZEP (1) «WFACTSVYFACT
121 Z2=RSJS0 (1) ¢ZARGER (1> ¢IIZEP (1D
122 NY=ESSC1) ¢DESIC1) ¢ZEF (1) #VFACT
123 KZ=RS.J 1) ¢IESJ(1) «IZEP (1)
124 vZ=ESJSR (1) ¢DTEP (15 o VFACT
125 C INFINITE UM PART
126 IF ¢HEMAX.EQ, 1XG0 TO 25
127 Do 75 J=&s NEMRY
128 RU=XN+DESICD ¢ TES ¢ ) @ CZEP (D +ZEMCD) )
129 YY=YY+BSII0 (> ¢ (ZEP (15 ¢FACTM () ¢FACTM () +
130 T ZEML D FACTP ¢ «FACTP () )
131 2Z=2Z+BSIIR (D ¢ QARGEP ¢JY ¢DZEP (12 +2ARGEM () ozEM £F2 2
132 RY=XY+ESICI *DESI (> ¢ (ZEP (D) SFACTM (D 3
133 g ZEMCD SFACTRP (D D
134 HZ=XZ+ESI I oDESI (D ¢ ¢CDZEP ¢J> +DZEM ¢))
133 YZ=YZ+ESSE0 (1 ¢ CIZEP () ¢FACTM () +
136 Y DZEM CJ) ¢FACTP ¢ U5 )

137 75 CONTINUE
132 ¢ INTEGRAND WECTORS DENDTED WITH A “G*
139 g5 EXARG=YeEXP (-VsOs2.
140 516 ¢ TND =EXARGOVSCeNK



190
*

101

C CALL INTEGFATION SUBROUTINE AND PREPAFE ELEMENTS pF DISPERSION FELAT!

uIll

R¥2=TMAG*EETUOSLAMEDF+XZT CIMMAXY #1.4142173
RYZ=RYZ—-EETWD¢LAMEIA®YZI (IMMAX) ~(1,414213

ZERD=R¥KX® (RYY*RZZ-RYZORYZI +RRY® (RIYERZZ-CORKZeRYZ) +RHZGRNZeRYY
IFCHELS. ED. 1) ZEFPO=RYY*SINSD+RZZeLOI0+E, 0eIINESCOS INESRYZ

SEARCH FOR ZERDS OF NISPERZION RELATION YIA SUBPDUTIHE “"ZEARCH™

IF RELATIYE CHAMGE IN S IS SMALL PUT RESULTS IN DUTPUT
OR IF AIMAS £ IS OF ORDER OF REAL S STOP SEARPCHING

IFCAESCRTEST) . LT.STDOP.AND. ABS(RITESTY ,LT.STOPYGD TD S00

BEFORE OUTPUTING PESULTS CALCULATE WAVE PHRSE INFORMATION
PHASO=SOURFRE OF AMPLITUDE OF LONSITUDPINAL E FIELD OVER TODTAL E FIELD
EXDESO=S0UAFE OF AMPLIUDE OF ¥ E FIELD OVER TRANSVERSE E FIELD
TROTOT=PATIO OF EMNERGY IN TRAMSWERSE FIELDS TD ENERGY IN TOTARL FJIELD
EQRSO=PATIO OF MAGHETIC F1ELD EHNERGY TD ELECTRIC FIELD ENERGY

PR=RXYeRXI+RYZSFRKK

Ti41» 190

141 YYG (I =EXAFGeYY

142 ZZG(THY=EXARG+Z2

143 XYG (IMY =EXRRGeVeXY

144 KZG CIHY =EXARGeVexZ

145 Y6 (THY=EXRRGeYZ

146 90 COMTINUE

147 C

192

149 C INTEGRAL YECTORS DENOTED MWITH R
150 CALL CASF (Hy XG5 WATs INMAXD

151 CALL COIF H¥YYGs YY1y INMARD

152 CALL COSF(Hs 2253221« THMARD

153 CALL COSF (HeXYG %Y s INMAXD

154 CRLL COSF (HynZGs $¥Z1s THMAKD

155 CALL COSF (Hy¥25:¥YZ1s INMAKY

156 REX=RXM+EETHOSLAMEDAeXXT CINMAND
157 RYY=RYY+EBETWD*LAMEDReYYI CINMFIED
15 R22=FZZ-FETWO+L ANELA¢ZZT CIMNMAD
159 RXY=~IMAGeRETHOSLAMEDASRXYT ¢ IMHMAX)
160

161

162 C

163 C

164 C DISPERSION RELATION

165

165

157 400 FORMAT (2Xy2E10, 32> SHsSEL10,35sSKs2E10,20
168 C

169 C

170 €

171 CALL ZEARRCH(Sy ZERDO» SNEWSNTRIALS
1’2 C

1¢3 C

iv4 C

175 RTEST=(REAL (SHEW> —FEAL (8 > #FEAL (3D
176 AITEST= CATMAR (SHEWD ~AIMAG (8 2 7ATMAG (3
177 S=SHEM

178

179 IFNTRIAL-100 50,500,500

180 C

181 C

182 C

183 C

184 C

185 C

186 C

187 500 Pl=RXHeRYY+PKYeRKY

183 P1C=COMJSCPID

189 P1S0=REARL (P1+P1C>



T191,240

191
192
192
194
195
196
197
198
199
200
201
g0
263
204
205
205
207
208
209
210
211
212
213

o000

214

215
216
217
218
219
220
221
gea
ae3
£a4
225
226
eav
228
2e9

230

231
232
233
234
2395
235
237
233
239
240
.

c
c

500
700

200

102

PaC=COM.IG (F2)

PasSQ=FEAL (F2¢F2C)

PASO=REAL ( (RXYSRYZ-RYYeFHZ) oLIONJIG (RXYSRYZ=-RYYSRXZ) )

PEQ=P 1 EO+P2RG+P IS0

SC=REAL {SeLONIG )

nunl—?lH\ﬂoFC¢H+PD§noPICﬂ—;.OOPD¢IﬂE0 IMESFERL <P2CeP1>
DUME=COSRePEZ0+IINENPISN+PIZ0+ES. DeCOIINE+ SINESRERL C(F2CeP 1)
DLIN=SZ ¢ BETAE ~ (2., NeCSRIeLIREZEC)

DiME=1. Q+DUM

PHASG=TNL A PSD

EXDESR=PII0-DUNE

EQES@=TILMeFSDLIMS

THOTOT=¢OUMIe DLIME) ~ COLIMTe DUM2+DLIML ¢S BETREZ (2, 0¢CSQLIREG) )

CALL OuUTPUT
COMTINUE
60, TD S

STOP
END

SUEFOUTINE OUTFUT

COMHON C» Sy ZERDs HEMAX» NTRIAL» INICy NELS

COMMON/PAPFIM, BETRE TEOT1s MEOMI s VEOVI» V0 ¥Ns VE» WRAT IO THETA
COMMON-F1ELDS, PHASR: EXDESQs THOTOT EDESO

COMPLEX S:ZERD

REAL MEDMI _ ‘

FIRST TIME THROUGH "OUTPUT" PRINT HEADINGS

IF(INDC.ME. 120 7D 200
YOOVI=YEOYIe%O
YNOY I=VYEDOYIeVH
VEOVI=VEOYI+VE

TYPE 900

IF(HELS.ED, 1> TYPE 905
IF(HELS.HE. 1> TYPE 90D&

TYPE 2910, TEQTIs WRATIOS EETRE» THETA
TYPE 930:V0»VHs YR

TYPE <40, v00% I YNOVIs VEOY]

TYPE 950

EACH TIME THROWGH "OUTPUT" PRINT DATAR

200

2300
200

GAMOLH=RAIMAS (S/30RT (MEOMIDD
ARBZERD=CABS (ZERD
TYPE qu-C:S’bHHDLHrPHRS“:EVDEgQ’EDPSOr EZERDs HEMAXs NTRIAL

RETURHN
FORMAT ¢~ 775 1%y 20HINHOMOSENEDUS PLASMAY



103

7241290

241 Q05 FORMAT (1Xs IZHELECTROSTATIC DISPERSION RELATIDHD

2492 Saa FORMAT (1¥« 3SHELECTROMAGNETIC DISFERSION RELATION

243 Q10 FORMAT (/s 2Xs GHTE-TI=sFd. 1985y SHWFEAUCE=s F&, 3y EXr GHEETRE=»Fi. 2y
244 k3 A SHTHETA=F%. 22

245 930 FOFMAT (EXs EHYDAVES«FE, 24X EHYNAYE=3FS, Bs 4 M GHYE-VE=«FE, 3)

246 940 FOFMAT E¥» AHYD VI s FA S 3K GHYHAVI S Fi . Zr 3Ky SHVEAVI=a F5. 3D

247 QS0 FORMAT C/72 4s 1HK « 65 s SHOMEGR 2K SHEAMMAY 122« SHELZ/E2s 1Me THEXS-ET¢
248 & 3 1Xs GHES /B2y 2k AHZERDs X5 SHHE 2¥s cHTREIAL S ~2

249 950 FORMAT (IX«F7. 3+FE, 442Xy IPEQ.SH>SHsET. S 22

230 % OPF4.211KsFd, 3 1HrET. 211K ERL 1pEX» IS 3K I

251 EHD

*



o

OO0

P ECRVE Wi WAy 1 yoRe
GOo

cge cC
23 ¢C

43 C
47 C

S0 C

104

IOMS:  HOTs UHMAGNETIZED

ELECTROME: HOT, MAGHETIZED
DRIFTS FARRALLEL AMD PERPEMDICULAR T E FIELD
TEMFERRTURE RHIZOTFOFY

WMAYES: OBLICUE FROFRSATION

REQUIIRES SURPOUTIHET: PUF«FIFCMsEMEI SEARCH DUTFUT

COMMOM IMOCs Sy FEFO«HTRIALs HEs TsHELS
COMMOM/FARRM.- SECEETAE s TEQTI s MEQMI « YFERPs YPARY WEATIOY THETH
COMMDOM-FIELDE, FHATDEXOESH, THOTOT

FEAL MEOMI

COMPLEX e TR SHEN 2EFDZERDLD« TEST IMAG
COMPLEX ZAFGIZI0Z1

COMFPLEY ZRRGEFRs TEFs ICEP s SAFGEMs ZEMs DZEM
COMPLEX ZRRGED«ZEDs DZEQS DEL TR DELTRO» GAMMA
CONFLEY FREsRYYsPIZsFEY s RYZsFRE

COMPLEXY FACTsFALCTIND

COMPLEY FlsP2sFPI0sFEC

DATR ERLD~1 E~5~

DATH STOP-1.E-S5~-s HEZTOP-S0-
IMAGSCMPLE ¢, Os 1, (2

PLASMA FRFEAMETERS
HELS={.0
MEDOMI=1. 01235, 0
TEDTI=1.0
EETHE=1, 0
LWRRTID=<%. 0
WRSO=WFATIDSLFATID
YEDY I=E0FRT (TEOTI-MEDMID
RE=0.0
VPARR={. 0

5 TYFE &t

810 FORMAT < 5%y 1 GHEMTER DRTR~2
READ{T, 21SIMELS

215 FORMAT<IL .
READ (Fs 22 VPEFRP»EETAEs THETA

§20 FORMAT {3F10, 0
YFPERP=YPEFP-YEOVI
COSIN=COEDLTHETA?
COsR=COSIMeCOTIN
SIHE=SINHD(THETA»
SIHNEN=3INE+ZINE
TAN=SSIHE-COZIH
TAHSR=TAN*TAN

YARIARELE IMITIARLIZATION
20 READCS 23200 CIRTAFTS S+ DCs HPRINT
530 FDRMAT C4F10, Do IS



5!

¢

c
c

C

105

INCREMENT WAVE MUMEEP BY DC WITH DO LOOP

DD £00 IMBC=1,HFFINT
C=C3TART

C=C+ (INDC~1)> +IC
CER=CeLl

INITIALIZE HUMEER OF ATTEMFTS TO SERRCH FOR ZERD

HTRIAL=-1 .

C CALCULATE ELEMENTS OF DISPERSION RELATION

C

50 SS@i=ZXel

FACT=3~-C*IINEeVFERP

FRCTSO=FRCTeFACT

ZARGI=SeVEDY I~ (1. 414213e0D

CALL POF (ZARGI»Z2IsNZ2ID

R¥K==geCSA/BETRE+E ﬂ/MPQﬂ+MEUHIO7HPFIOZI

RYY=~2¢CSD¢CD?Q/EETHE+ST“/HPfﬁ+20’ﬂpfl04HPGIOSINSDOHEDNI
+MEOMI*ZARGIeZI+L030e (1+2eZARGI¢ZARGITANIM

RZZ=~Z¢CR¢ T INZQ/BRETAE+SSO/UETO+ISMEOMN I oZREGI e ZARG [ ¢LCOZH
+MEOMISZARGI®ZT ¢S INS(e (1+2¢ZARGI ¢ ZARGT ~ TAMNIED

RYZ=2¢CEN¢SINESCOSIMN/EETAE+ (ZeMEOMI ¢ ZARGISZARG IS IHESCOSING

& 3 ¢ (1+ZARGISZI & (1~1/ (2eZARGISZARGIZ )

HE=0

EARG=CSQ¢IININe (1 ~AE>

CALL EXEBI(EARGsMNEs EXEs IER)

CALL EXP1 {BARG«ME+1, EXEFLs IERD
ZARGED=(S-C+SINE*YFERP-CeCOSINOVYPHR) 7 (1.414213«CoCOSIN?
CALL FIFfZARGEDs CED.DZEDD . .
DELTAO=-AE+DZEOQ-2eZARGED*ZED-

RXY=RKK~FARGeTELTAO® (EXE-EXEPLY
RYY=RYY+VPERFeYPERPeCSNeSINSRe (1-EXEe DELTAD-2) ~BARG
R2Z2=RZZ+TANSUeFACTEe (1 -EXESDELTAO-2) #BARG
RXY=~1MAGeYFEFFe T+ SINE® (EXE~EXEBFLY ¢sDELTRO-2
RXZ==IMAGeTANeFACTe (EXR-EXEPL) ¢ BELTAD -2

RYZ=RYZ+TANHeC eI INESeYFERFoFRALTe (1-EXE+DELTAD-2> #ERPG
ZERO=R¥Xe (RYYORZZ~PYZeRYI) +RAY S (RXYeRIZ~CoRXZERYZ) +RUZORXIOREYY
IF(NELS.Ef1, 1> ZERO=RYY¢SINSO+RIZ+COS0+2, 0+ SINESCOSINeRYZ

C SuUM OF TERMS WITH MODIFIED RESSEL FLUHCTIONS" =

60 ZERDOLD=ZERD

NE=NE+1

NESQ=NE+NE

EXB=EXEPL

CALL EXPRICBARG: NE+1, EXEPLy JIEFD

ZARGEP= (R+MHE~CeSTHESVYPERP-CoCOSINOVFARY # (1.414213eCeCOSIMND
ZARGEM= (S—HE=CeS INE*YFERP-C+LCOSIHeVFPARY 7 (1,9414213eCeCOTIMND
CALL PIF (ZARGEPsZEF» DZEFP)

CALL PDF (ZARGEMs ZEMs DZEM '

GAMMA=~AEs (DZEFP-DZEM 7/2-~-ZARGEDs (ZEP~ZEM)

DELTR=~AE+ (DZEFP+DNZEM) /2-ZARGEOS (ZEP+ZEM)



106

71015150

101 RXX=PXX-DELTA® (EXPe (NESO/EBARG+2¢EARG-2eNE) ~2eBRRGEXEPL)

102 RYY=RYY~(EXEe (CTO+ S IMSReVYPERPSYPERP+NESHY ¢DELTA

103 F-2¢EXE¢VPERPeNEeGAMNNRe TS INEY VEARG

104 RIZZ=RZZ-TANSGeEXE® (DELTR® CFACTSA+MERIC) ¢ 2o SAMMAeNESFACTY ~ERRG
105 RXY=RXY+IMAGe (EXRe (| =NE-EARG) —EXEFL) ¢ (NE®SAMMA-YPERPe

106 SCeSINESLELTAY

167 RRZ=RNXZ-IMAE¢TAM (EXEe ¢ 1 -ME/EARGY —EXEPLY ® (HEeGARMMA+FACT ¢ DELTAY
108 BYZ=RYZ+TAHeEXE® (NELTRe (NESO+CIDe S INSNeVPERPOVFERP~Co S INESS*VPERPY
109 ) +HEeGAMMA® (S~ZeCeSIHESVPERPY > #BARG

110 ZERO=RXX ¢ (RYYSRZZ~-PYZoPYZ) +RXY ¢ (RXYSRZZ—~ZORXZSRY2Z) +RXZORXZSRYY
111 IF (HELS,EQ. 1) ZERD=FRYYe I INSH+RZZ«COZ0+E, 0eSINESOSINePYZ

112 C

113 € IF ADDITION DF MEW BESSEL FUMCTION TERM TO "ZERD" RESULTS IH

114 C DONLY A SMALL CHAMGE OF IF NUMEER OF BESSEL FUNCTIONS USED EXCEEDS
115 C MBRTOF STOP CALCULATIODH DF “ZERO"

116 IF ¢CCRES (ZERD-ZERDLID . LE. CRES (ZEROY «END, AND.NB, 6T, 360 TO 100
117 IF(HB-NPSTUP) &0 104, 100

118 C

119 ¢ SERRCH FDR ZERDS OF DISPERSION RELATION vrﬂ “SERRCH"

120 100 CALL ZEAFRCH{(Ss ZERDs SHEW« HTRIALD

121 400 FORMAT (/s 2E9. 3 SK> SET. 25 SXI2ES. D

122 C

123 ¢ IF RELATIVE CHANGE IN S IS SMALL OUTPUT RESULTS

124 C OR IF AIMRS S IS DF OrRIER OF REAL 3 STOP SEARCHING

125 TEST={SHEW-3> 8

125 =SNEW

127 RTEST=REAL <TEST)

128 AITEST=AIMAG CTEET)

129 IFCARESCRTEST> .LT.STOF,. AMD. ﬂBS(ﬂITEST) LT.STOP> 6D TD SO0

130 IFCHTRIARL~15Y 30 500,500

121 C

132 C

133 C PBEFORE OUTPUTING RESULT: CALCULATE HARYE PHASE INFORMATION

134 C PHASN=SOUARE OF AMPLITUDE OF LONSITUDINAL E FIELD DVER TOTAL E FIELD
135 C EXDESE=SOUARFE OF AMPLITUDE OF X E FIELD OVER TOTAL E FIELD

126 C THOTOT=FATID DF EMERGY IM TRANSYERSE FIELDS TO ENERGY IN TOTAL FIELDS
137 S00 Pl=pRXXeRYV+RXYORRY

138 PiC=COMNJIG{P1)

138 P1S0=REAL (F1+P1C>

140 FPR=RXYeRXZ+RYZORHK

141 PEL=CONJG (PE)

142 P2Sa=REAL (FZeP2C)

143 P3SR=REAL ¢ (RRYSPYZ-RYYORXZ) ¢COHIG (RXYSRYZ-RYYORXZ) )

144 PSR=P130+P2SO+P2EN .

145 SS=REAL (SeCOMIG <)Y

146 CILUMI=SINSQeP2SO+COSN+P 1 S0~2. D6COSINeIINE*RERAL (P2CeF 1)

147 DUM2=COSNePEZSO+SINZGoP 1 SR+PIIN+E. DeCOSIN+SINESRERL (P2CeFP 1)

142 IUN3=1. Q+32¢EETRE- (2., DeLSMeUWRSOY

149 PHASO=DUM]1 /P3IQ

150
*

EXOESQ=P33&-DUM2



107

ri1S12n
131 THOTDT= CDUMSe 2> » (DL T+ IUNR+ DI 1 $S2EETAE (2. 00CIRHURS0Y)
152 CALL DUTPUY ,
4152 600 COHTINLE
154 ?0060 TR S
155 €
196 C
157 C
155 900 syoP
15% Enn
150 SURROUT INE OUTPUT
151 COMPLEY $»ZIEPQ
:?2 gmL T £ 1AL R, S- NELS
G 104 1IN - "IALsHRy S
154 CS:;'L{S,,,%HEE,‘,E' ;gp?cf,':,g « TEQT 1, MEDH I » VPERP s VPARs WRATINOS THETA
159 COMMON/FIELDS. PHAI0» E7OESH THOTOT
165 L )
467 C
165 C FIRST TIME THPOUGH ~gurruT - PRINT HEADINGS
159 IFCINIC.HE. D> gp TO 270
170 VAL SO=MEONT -~ cuif qnn,,,;r;.-Hsz
171 VADC=SORT CVAQC 2Cn
172 VEQVT=SORT <TENT1 -MEOM T 7
1 _f-; Yooy 1=YPEPPeVEQY]
1 [ =1. |"]_
125 ¢ TRATIO=1. 0-AE
176 TYPE <00
177 IF ¢CHELS.EO. 1D TYRE “0%5
178 IF CHELS.HE. D TVPE 305 ,,
179 TYPE 910y TEQT].VEOVT ” % 'i'[]i:o WFATIO
180 TYPE 916+ BETRE.RE.TFF 10 THETA ‘
122 TYPE 912 VFERF, vOOYI? "0
12 TYPE 920
152 C EACH TIME THROUGH ~guTeyT . TYPE DATA
184 200 GAMOLH=RINAG (5 copT MEDM)
185 ARZERD=CAES (ZERID .
1 83 TYPE 9221 Cr SHGRUOLK, gHP M EXDESE! THOTOT s AEZERD NEMTRIAL
157  £00 RETURM
128 C
1E9 900 FORMAT /77 1N 1eHHOrpZENEDUS PLASMAD
120 905 FORMAT (X 33:g£2123g1ﬂnc DISFERSION RELATION
191 905 FQEMAT (1K« XSHELETRQHA SHETIC DISPERSION RELATIONY .
192 S10 FORMAT (/s 3N ERTE Tlms F 3 13 SHYE VIS ES. 234X SHYRCEI1ED, 257Xy
193 SRHWPEAMCE=F§, 21
194 912 FOPMAT (35 SHUEEPR ~vE= » F 5 20 4%, SHYPERP/VI =1 FE, 33 4R SHVPHRVES) FE .
195 916 FORMAT (3 7HE RETASFZ° Sy 7Me SHRE=«Fd,.1212%s1 OHTPEFRsTPAREFS. 2y
1 a5 + - -
1 ay ] Fg:ﬁ;lg:"zijsrg;;: sa:f;x' qHUr'TEGFh 29 SHTAMMAS 12X SHELSZE2» 1 X» PHEN2/ET2
198 $  INeEHTHATYT s Sde 3HZERTr 4Ky HNE s 2 SHTRIALSy /)
199 S2e Fﬂp[-]ﬁT(l}{_-F?_a'Fg._;.z;‘:’ 1PER, 2. 2N ET. S
200 ¢ OPFq.E';lx.Fq,e,174'?"4.2;3)4;53.1:3}(:13-3&13)
go1 END



%FREAFR FLDATING UNBERFLOW PC= 7345

%FRSAPR FLOATIMNG LUMDERFLOW PC= 7245

HOMOGENEOUS PLASMA

ELECTROIMAGNETIC DISPERSION RELATIDON
VE/¥I= 0,42E+02
ARE= (0.0
YPERFP-Y1= 4, 000

TE/TI= 1.0
E BETA= 0.25
VPERP/YE= 0,092

VPARAYE=

VA<C= 0, 34E-03
TPER-TPAR= 1,00
0,000

EL27/E2 EXN2-ETZ2 TH-TOT

K OMEGR GRMMA
o.z00 0,0121 2.39E-03 1.42E-01 1,00 .30 1,00
t.280 0,011% 3.9%E~03 1, 50E-01 $.00 .30 1.00
c.260 O0.0111 3. 3%E~-02 1.59-01 .00 .21 1,00
0.240 00,0105 3.E2E~03 1.55E-01 (.00 .32 1,00
0.ze0 0.0101 2, FRE~02 1.52E~-01 1,00 ,23 1,00
0.200 0.0095 2. 42E-032 1.49E-06 1.00 .34 t,00
0.180 0,0090 2, I0E-N3 1.41E-01 1,00 .25 1,00
0,160 0,00235 3. 05E~-02 1.31E-01 1,00 ,L37 1.00
0-140 0-00?8 2.?35‘03 l-l?E-Ol .99 -39 1.00
0.120 0.,0071 2.35E-03 1.01E-01 .99 .41 1,00
ENTER DATA

1

4.0 0.25 22?20

0.3 0.012 G.003 ~0. 02 10

HOMOGENEDUS PLASMA
ELECTRDSTATIC DISPERSION RELATION

VEsvI= 0,4ZE4+02
AE= 0.0
YPERP-VI= 4,000

TE-Tl= 1.0
E BETA= 0.25
VPERP-VE= 0,092

VAsC= 0.324E~-032
TPER/TPAR= 1,00
WPAR/VE= 0.000

K OMEGA GAMMA EL2/E2 EX2-ET2 TH/TOT
c.300 0,0101 -1.23E-02 -5,25E-02 1.00 .40 1,00
0.250 0.0094 =1.10E~03 -4,73E-02 1.00 .43 1.00
c.260 0.0085 -9,91E-04 =4.25E~02 1.00 .46 1,00
0,240 0.0079 -3.35E-04 <2, 79E-02 1,00 .4% 1,00
0.220 0.0072 -7.8FE-04 -3.37E-02 1,00 .53 1,00
0.200 0.0085 —6.9E-04 ~2,92E-02 1.00 .57 1,00
0.180 0.0052 -A,!10E-04 -2.82E-02 1.00 .62 1.00
0,160 0,0051 =S.30E~-04 =-2,2FE-N2 1.00 .67 1,00
0,140 0.0045 —4,54E-nq4 -1,8SE-02 1,00 .72 1,00
6.120 0.0033 -2.82E-04 ~-1.84E-02 1.00 .78 1,00

ENTER DATA
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WPE-WCE= €3, 00
THETA=27, 00

ZERD NE TRIALS
0,3E-09 7 4
0.1E-08 6 4
0, 2E~-09 6 4
0.EE~09 & 4
¢. SE~-09 & 4
Q. 3E-09 6 4
0.32E-09 6 9
0.3E-09 é 9
0.2E-09 5 4
0. 1E-G9 5 4

WPE-WCE= €8, 00
THETR=8?7, 00

NB TRIALS
b §-1

ZERD

0. 1E-03
0118-08
0.2E-03
0.2E~-02
0. SE-03
0.8E-~08
0.1E~07
0.1E-09
0.7E-09
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