328 research outputs found

    La tierra del remordimiento. De Ernesto de Martino.

    Get PDF
    Sin resume

    The relationship between epilithic biofilm stability and its associated meiofauna under two patterns of flood disturbance

    Get PDF
    Habitat stability is an important driver of ecological community composition and development. River epilithic biofilms are particularly unstable habitats for the establishment of benthic communities because they are regularly disturbed by floods. Our aim was to determine the influence of habitat instability on meiobenthic organisms. We hypothesized that hydrologic variables are the most important predictors of meiofauna distribution. We monitored epilithic communities (meiofauna and microalgae) with a high sampling frequency during 2 sampling periods with contrasting hydrodynamic patterns in a temperate river (the Garonne, France). Nematodes and rotifers dominated meiofaunal assemblages. The critical flow velocity threshold for their maintenance in the biofilm was ,30 cm/s, a result suggesting that meiofauna can resist higher flow velocity within the biofilm than within sediments. Nematode distribution was primarily influenced by the duration of undisturbed periods, whereas rotifer distribution was also correlated with the thickness of the biofilm. During the periods after floods, rotifers were faster colonizers than nematodes. Collectively, our results show that flow regime was an essential driver for biofilm community development

    El bizutage: ritual y reproducción social en la enseñanza superior francesa

    Get PDF
    The author analyzes the bizutage, a ritualized tradition of raggings that until recently characterized a particular sector of the French university system, that of the "prépas" and the ''Grandes Ecoles". After presenting the defining traits and history of this education system, and interpreting the bizutage´s symbolic and social components —space, time, actors, language, trials and punishments—, the author argues that the bizutage truly constituted a rite of initiation, with its three well defined parts: separation, margin and incorporation. The rite facilitated the social reproduction of a relationship of domination —that expressed in the degrees of the Grandes Ecoles— and the perpetuation of an élite. It also created a "distinction". The public debate about the recent prohibition of the bizutage reveals the extent to which the true nature of the Grandes Ecoles, i.e. their social elitism, is concealed. The selection rules at the Grandes Ecoles are presented as based upon the "natural" criteria of intellectual ability and individual effort.El artículo es un estudio del bizutage, conjunto ritualizado de novatadas practicado hasta hace poco en un sector específico de la enseñanza superior francesa: el de las ''prepas" y las ''Grandes Ecoles". Tras analizar las características de este sistema de enseñanza y su historia, y tras una interpretación de los elementos simbólicos y sociales del bizutage —espacio, tiempo, actores, lenguaje, pruebas y castigos—, se muestra que el ritual constituía una verdadera iniciación con sus tres partes bien definidas: separación, margen y agregación; una iniciación que permitía la reproducción social de unas relaciones de dominación basadas en los títulos de las Grandes Ecoles, la perpetuación de una élite y la creación de una "distinción". El debate en torno a la reciente prohibición del bizutage revela cómo se oculta la verdadera naturaleza del sistema de enseñanza de las Grandes Ecoles —es decir, su elitismo social— al presentar la selección que lo caracteriza como basada en criterios "naturales" de capacidad intelectual y esfuerzo individual

    Modelling epilithic biofilms combining hydrodynamics, invertebrate grazing and algal traits

    Get PDF
    1.This model of stream epilithic biofilm biomass dynamics is based on the system of equations from Uehlinger et al. (1996) and the term for autogenic detachment of biofilm from Boul^etreau et al. (2006). Its new features are (i) a mathematical term based on estimated feeding activity of biofilm-dwelling invertebrates, (ii) local hydrodynamics considered as the principal factor governing algal traits and biofilm structure and (iii) a variable degree of parameterisation that was adjusted to biofilm biomass conditions. 2. Biofilm biomass was monitored over a one-year period in the Garonne river in France (September 2008–2009). An allometric approach was used to estimate the feeding activity of biofilm-dwelling invertebrates based on their energetic requirements. Diatom functional diversity was also monitored to find how it varied with overall biofilm growth patterns. The one-year monitoring period was divided into six biofilm biomass cycles, with each cycle consisting of a phase of biofilm growth as the main process, followed by detachment.3. This model reproduced the observed data as a complex of biofilm growth/detachment cycles using different sets of empirical parameters which allowed (i) the dominant processes involved in each biofilm cycle to be evaluated and (ii) the six cycles of biofilm growth/detachment to be reproduced. This accounted for the observed patterns more effectively than a parameterisation using a single set of empirical parameters. 4. High flow had a severe effect on biofilm dynamics through chronic and catastrophic detachment. Presumably as a result, assemblages of diatoms shifted towards species that were firmly attached and protected by mucilage. 5. During low flow (and when temperature was high), biofilm dynamics was mainly affected by autogenic detachment and grazer activity. The grazing pressure of the dominant biofilm-dwelling invertebrates (Nematoda and larvae of Chironomidae and Trichoptera) was fairly low (a maximum of 6% of biofilm biomass ingested daily); nevertheless, their presence in the biofilm seemed to favour biofilm autogenic detachment

    The effect of top‐predator presence and phenotype on aquatic microbial communities

    Get PDF
    The presence of predators can impact a variety of organisms within the ecosystem, including microorganisms. Because the effects of fish predators and their phenotypic differences on microbial communities have not received much attention, we tested how the presence/absence, genotype, and plasticity of the predatory three-spine stickleback (Gasterosteus aculeatus) influence aquatic microbes in outdoor mesocosms. We reared lake and stream stickleback genotypes on contrasting food resources to adulthood, and then added them to aquatic mesocosm ecosystems to assess their impact on the planktonic bacterial community. We also investigated whether the effects of fish persisted following the removal of adults, and the subsequent addition of a homogenous juvenile fish population. The presence of adult stickleback increased the number of bacterial OTUs and altered the size structure of the microbial community, whereas their phenotype affected bacterial community composition. Some of these effects were detectable after adult fish were removed from the mesocosms, and after juvenile fish were placed in the tanks, most of these effects disappeared. Our results suggest that fish can have strong short-term effects on microbial communities that are partially mediated by phenotypic variation of fish

    Mangrove Facies Drives Resistance and Resilience of Sediment Microbes Exposed to Anthropic Disturbance

    Get PDF
    Mangrove forests are coastal ecosystems continuously affected by various environmental stresses and organized along constraint gradients perpendicular to the coastline. The aim of this study was to evaluate the resistance and resilience of sediment microbial communities in contrasted vegetation facies, during and after exposure to an anthropic disturbance. Our hypothesis was that microbial communities should be the most stable in the facies where the consequences of the anthropic disturbance are the most similar to those of natural disturbances. To test this, we focused on communities involved in N-cycle. We used an in situ experimental system set up in Mayotte Island where 2 zones dominated by different mangrove trees are daily exposed since 2008 to pretreated domestic wastewater (PW) discharges. These freshwater and nutrients inputs should increase microbial activities and hence the anoxia of sediments. We monitored during 1 year the long-term impact of this disturbance, its short-term impact and the resilience of microbial communities on plots where PW discharges were interrupted. Microorganism densities were estimated by qPCR, the nitrification (NEA) and denitrification (DEA) enzyme activities were evaluated by potential activity measurements and pigment analyses were performed to assess the composition of microbial photosynthetic communities. At long-term PW discharges significantly modified the structure of phototrophic communities and increased the total density of bacteria, the density of denitrifying bacteria and DEA. Similar effects were observed at short-term, notably in the facies dominated by Ceriops tagal. The results showed a partial resilience of microbial communities. This resilience was faster in the facies dominated by Rhizophora mucronata, which is more subjected to tides and sediment anoxia. The higher stability of microbial communities in this facies confirms our hypothesis. Such information should be taken into account in mangrove utilization and conservation policies

    Allelopathic inhibition of primary producer growth and photosynthesis by aquatic fungi

    Get PDF
    Autochthonous primary production is generally much reduced in forested headwater streams. Several hypotheses have been proposed for explaining this observation, among them, the low light intensity, or the strong constraints exerted by stream current. Allelopathic inhibition of competitors is a common ecological process in aquatic environments. Aquatic hyphomycetes are known to chemically inhibit bacteria and other fungi (including other aquatic hyphomycetes) but a possible allelopathic effect of aquatic hyphomycetes on primary producers has never been tested. The inhibitory effect of twelve aquatic hyphomycete species was tested on three diatom species. Nine aquatic hyphomycete species exhibited anti-diatom activity. Up to 100% diatom growth inhibition was observed. Our study reveals that such allelopathic interactions might be common in streams and probably involve an array of fungal compounds. We propose that the generally reduced primary production observed in forested headwater streams is, among other factors, due to the inhibition of primary producers by allelopathic compounds released by aquatic hyphomycetes

    Bioactivity of Benthic and Picoplanktonic Estuarine Cyanobacteria on Growth of Photoautotrophs: Inhibition versus Stimulation

    Get PDF
    Understanding potential biochemical interactions and effects among cyanobacteria and other organisms is one of the main keys to a better knowledge of microbial population structuring and dynamics. In this study, the effects of cyanobacteria from benthos and plankton of estuaries on other cyanobacteria and green algae growth were evaluated. To understand how the estuarine cyanobacteria might influence the dynamics of phytoplankton, experiments were carried out with the freshwater species Microcystis aeruginosa and Chlorella sp., and the marine Synechocystis salina and Nannochloropsis sp. exposed to aqueous and organic (70% methanol) crude extracts of cyanobacteria for 96 h. The most pronounced effect observed was the growth stimulation. Growth inhibition was also observed for S. salina and M. aeruginosa target-species at the highest and lowest concentrations of cyanobacterial extracts. The methanolic crude extract of Phormidium cf. chalybeum LEGE06078 was effective against S. salina growth in a concentration-dependent manner after 96 h-exposure. All of the cyanobacterial isolates showed some bioactivity on the target-species growth, i.e., inhibitory or stimulating effects. These results indicate that the analyzed cyanobacterial isolates can potentially contribute to blooms’ proliferation of other cyanobacteria and to the abnormal growth of green algae disturbing the dynamic of estuarine phytoplankton communities. Since estuaries are transitional ecosystems, the benthic and picoplanktonic estuarine cyanobacteria can change both freshwater and marine phytoplankton succession, competition and bloom formation. Furthermore, a potential biotechnological application of these isolates as a tool to control cyanobacteria and microalgae proliferation can be feasible. This work is the first on the subject of growth responses of photoautotrophs to cyanobacteria from Atlantic estuarine environments

    The response of extracellular polymeric substances production by phototrophic biofilms to a sequential disturbance strongly depends on environmental conditions

    Get PDF
    Phototrophic biofilms are exposed to multiple stressors that can affect them both directly and indirectly. By modifying either the composition of the community or the physiology of the microorganisms, press stressors may indirectly impact the ability of the biofilms to cope with disturbances. Extracellular polymeric substances (EPS) produced by the biofilm are known to play an important role in its resilience to various stresses. The aim of this study was to decipher to what extent slight modifications of environmental conditions could alter the resilience of phototrophic biofilm EPS to a realistic sequential disturbance (4-day copper exposure followed by a 14-day dry period). By using very simplified biofilms with a single algal strain, we focused solely on physiological effects. The biofilms, composed by the non-axenic strains of a green alga (Uronema confervicolum) or a diatom (Nitzschia palea) were grown in artificial channels in six different conditions of light intensity, temperature and phosphorous concentration. EPS quantity (total organic carbon) and quality (ratio protein/polysaccharide, PN/PS) were measured before and at the end of the disturbance, and after a 14-day rewetting period. The diatom biofilm accumulated more biomass at the highest temperature, with lower EPS content and lower PN/PS ratio while green alga biofilm accumulated more biomass at the highest light condition with lower EPS content and lower PN/PS ratio. Temperature, light intensity, and P concentration significantly modified the resistance and/or recovery of EPS quality and quantity, differently for the two biofilms. An increase in light intensity, which had effect neither on the diatom biofilm growth nor on EPS production before disturbance, increased the resistance of EPS quantity and the resilience of EPS quality. These results emphasize the importance of considering the modulation of community resilience ability by environmental conditions, which remains scarce in the literature
    corecore