18 research outputs found

    Negative Differential Resistance in van der Waals Heterostructures Due to Moiré-Induced Spectral Reconstruction

    Get PDF
    Formation of moir\'{e} superlattices is common in Van der Waals heterostructures as a result of the mismatch between lattice constants and misalignment of crystallographic directions of the constituent two-dimensional crystals. We discuss theoretically electron transport in a Van der Waals tunnelling transistor in which one of the electrodes is made of two crystals forming a moir\'{e} superlattice at their interface. By investigating structures containing either the aligned graphene/hexagonal boron nitride heterostructure or twisted bilayer graphene, we show that negative differential resistance is possible in such transistors as a consequence of the superlattice-induced changes in the electronic density of states and without the need of momentum conserving tunnelling present in high-quality exfoliated devices

    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    A multilaboratory comparison of calibration accuracy and the performance of external references in analytical ultracentrifugation.

    Get PDF
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies

    Development of novel antimicrobial coatings incorporating linalool and eugenol to improve the microbiological quality and safety of raw chicken

    Get PDF
    Incorporating natural antimicrobial agents in antimicrobial coatings has recently been gaining more attention. This study aimed to develop novel coatings with incorporated natural antimicrobial compounds (linalool, eugenol) to improve the quality and safety of raw chicken during storage at 4 °C. Coatings consisting of chitosan and gelatine (C/G) mixes (40:60 ratio) revealed lower viscosities above 30 °C, while the shear thinning behaviour of chitosan and gelatine was maintained. Furthermore, the antimicrobial coatings, when applied to raw chicken samples resulted in lower pH and TBARS levels compared to the control during storage. Also, raw chicken coated with the antimicrobial coatings containing 0.5 and 0.7 mg/mL of linalool and eugenol suppressed Lactic-acid-bacteria and Total-Plate-Counts under the spoilage level (7-logs CFU/g) and showed that they can increase the microbiological shelf-life of the product up to two days during storage at 4 °C. Results also showed that the coated samples exhibited a significantly lower Listeria monocytogenes population than the control samples during storage. Conclusively, this study revealed that adding linalool and eugenol in C/G coatings can enhance the shelf-life and safety of raw chicken

    Examples for the determination of radial magnification errors.

    No full text
    <p>(A) Radial intensity profile measured in scans of the precision mask. Blue lines are experimental scans, and shaded areas indicate the regions expected to be illuminated on the basis of the known mask geometry. In this example, the increasing difference between the edges corresponds to a calculated radial magnification error of -3.1%. (B—D) Examples for differences between the experimentally measured positions of the light/dark transitions (blue circles, arbitrarily aligned for absolute mask position) and the known edge distances of the mask. The solid lines indicate the linear or polynomial fit. (B) Approximately linear magnification error with a slope corresponding to an error of -0.04%. Also indicated as thin lines are the confidence intervals of the linear regression. (C) A bimodal shift pattern of left and right edges, likely resulting from out-of-focus location of the mask, with radial magnification error of -1.7%. (D) A non-linear distortion leading to a radial magnification error of -0.53% in the <i>s</i>-values from the analysis of back-transformed data. The thin grey lines in C and D indicate the best linear fit through all data points.</p

    Distributions of calculated BSA monomer signals for the different kits and the different optical systems.

    No full text
    <p>The box-and-whisker plots indicate the central 50% of the data as solid line and draw the smaller and larger 25% percentiles as individual circles. The median for each group is displayed as vertical line.</p

    Correlations of the <i>s</i><sub><i>20T</i>,<i>t</i>,<i>r</i>,<i>v</i></sub>-values of the BSA monomer with the difference of the best-fit meniscus from the mean meniscus value, separately for absorbance data sets (A) and interference data sets (B).

    No full text
    <p>The difference of the best-fit meniscus to the mean was calculated separately for each kit, to eliminate offsets due to different sample volumes in each kit, and then merged into groups for the optical systems. Data are shown as a histogram with frequency values indicated in the colorbar. The dotted lines show the theoretically expected dependence of the apparent <i>s</i>-value on errors in the absolute radial position.</p

    Root-mean-square deviation of the best-fit <i>c</i>(<i>s</i>) model of the BSA sedimentation experiment when scanned with the absorbance system (green) and the interference system (magenta).

    No full text
    <p>The box-and-whisker plot indicates the central 50% of the data as solid line and draws the smaller and larger 25% percentiles as individual circles. The median is displayed as a vertical line.</p

    Examples of transient changes in the console temperature reading during the SV experiment, as saved in the scan file data.

    No full text
    <p>For comparison, the maximum adiabatic cooling of -0.3°C would be expected after approximately 300 sec, recovering to the equilibrium temperature after approximately 1,200 s (see Fig 3 in [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126420#pone.0126420.ref033" target="_blank">33</a>]).</p
    corecore