721 research outputs found

    Resource optimization and sustainable manufacturing in the development of a self‐chilling beverage can

    Get PDF
    Every year in Europe more than 30Mt of CO2e are emitted from retail refrigerators (Cowan et al., 2010). This is due to the leakages of HFC and HCFC that have adverse impacts on climate change not only because they are powerful greenhouse gases, but also because leaking systems are less energy efficient (Bovea et al., 2007; Cowan et al., 2010). Both the energy consumption worldwide and the high emissions of greenhouse gases have directed interest to alternative solutions to conventional refrigeration systems. To this end, a new technology has been designed to supply cooled products on demand using the cooling effect provided by the endothermic desorption of carbon dioxide previously adsorbed onto a bed of activated carbon. The principles of life cycle engineering have been utilized to evaluate the overall environmental performance of one possible application of this technology: a self-chilling beverage container with a steel outer can to contain the beverage and an inner aluminium can to contain the adsorbent. Please click Additional Files below to see the full abstract

    An Investigation into a Combined Visual Servoing and Vision-Based Navigation System Robot for the Aerospace Manufacturing Industry

    Get PDF
    High-Value manufacturing, such as aerospace manufacturing, has been less impacted by the mainstream use of robotic automation compared to other manufacturing industries. This is due to the cost factor required when creating robotic systems which can successfully interact with such high tolerance work�pieces. This research aims to investigate the gap of robotics within high-value aerospace manufacturing, with the goal of creating a generic robotic algorithm which can effectively and optimally detect and trace a variety of aerostructure inspired workpieces. This goal was achieved by firstly developing a vision system for detecting and tracing particular features of partially-known workpieces. These workpieces var�ied in size and spatial profile, having both obtuse and acute edges. Once an effective vision system was developed, a variety of distribution-of-labour algorithms were developed, with the aim of dividing the task of tracing a work�piece between the kinematic arm and mobile base. The results showed that different distribution-of-labour algorithms performed differently, depending on the type of detected feature, specifically how vertically inclined the feature was. These results were used to develop an optimal distribution-of-labour algorithm, which could dynamically and optimally switch between different distribution-of-labour systems, to trace a workpiece both quickly and accurately. Results showed that an optimal distribution-of-labour algorithm decreased tracing time and increased accuracy in realistic aerostructure-inspired workpieces compared to just using one major algorithm, and could dynamically trace workpieces regardless of previous knowledge or spatial profile

    Seismic reflection evidence for a Dangerous Grounds miniplate: No extrusion origin for the South China Sea

    Get PDF
    The collision of India and Asia has caused large strike-slip faults to form in east Asia, resulting in the extrusion of crustal blocks toward the southeast since the Eocene as a result of the indentation of rigid India into Asia. It has been suggested that the South China Sea opened as a result of relative motion between a rigid Indochina (Sundaland) block and China. Alternative models propose that riffing and seafloor spreading were driven by trench forces to the south. We test these competing models by analysis of seismic reflection profiles across the boundary between Sundaland and the southern rifted margin, known as the Dangerous Grounds. We show that the southern boundary of the Dangerous Grounds is a subduction zone that jammed in the middle Miocene. To the west the Dangerous Grounds are bounded by a strike-slip zone, also active until ∼16 Ma, that becomes diffuse south of the now inactive South China Sea seafloor spreading center. We place the western edge of the Dangerous Grounds just to the east of the Natuna Arch (Lupar Line). The West Baram Line is confirmed as originating as a major strike-slip fault within the Dangerous Grounds and is continuous with the Red River Fault Zone. Because the Dangerous Grounds were independent of Sundaland until ∼16 Ma, its motion cannot have been constrained by motion of this block, making extrusion impossible as a mechanism to rift the South China Sea. SE motion by both the Dangerous Grounds and Sundaland suggests subduction forces were the primary trigger for plate motions. Our reconstruction places a ∼280 km upper limit on the motion on the Red River Fault and a ∼1400 km width to the paleo-South China Sea. Copyright 2008 by the American Geophysical Union

    Thermochronology of the modern Indus River bedload: New insight into the controls on the marine stratigraphic record

    Get PDF
    The Indus River is the only major drainage in the western Himalaya and delivers a long geological record of continental erosion to the Arabian Sea, which may be deciphered and used to reconstruct orogenic growth if the modern bedload can be related to the mountains. In this study we collected thermochronologic data from river sediment collected near the modern delta. U-Pb ages of zircons spanning 3 Gyr show that only ∼5% of the eroding crust has been generated since India-Asia collision. The Greater Himalaya are the major source of zircons, with additional contributions from the Karakoram and Lesser Himalaya. The 39Ar/40Ar dating of muscovites gives ages that cluster between 10 and 25 Ma, differing from those recorded in the Bengal Fan. Biotite ages are generally younger, ranging 0–15 Ma. Modern average exhumation rates are estimated at ∼0.6 km/m.y. or less, and have slowed progressively since the early Miocene (∼20 Ma), although fission track (FT) dating of apatites may indicate a recent moderate acceleration in rates since the Pliocene (∼1.0 km/m.y.) driven by climate change. The 39Ar/40Ar and FT techniques emphasize the dominance of high topography in controlling the erosional flux to the ocean. Localized regions of tectonically driven, very rapid exhumation (e.g., Nanga Parbat, S. Karakoram metamorphic domes) do not dominate the erosional record

    Allogeneic hematopoietic cell transplantation for acute leukemia in first relapse or second remission

    Get PDF

    The PP2A inhibitor I2PP2A is essential for sister chromatid segregation in oocyte meiosis II.

    Get PDF
    Haploid gametes are generated through two consecutive meiotic divisions, with the segregation of chromosome pairs in meiosis I and sister chromatids in meiosis II. Separase-mediated stepwise removal of cohesion, first from chromosome arms and later from the centromere region, is a prerequisite for maintaining sister chromatids together until their separation in meiosis II [1]. In all model organisms, centromeric cohesin is protected from separase-dependent removal in meiosis I through the activity of PP2A-B56 phosphatase, which is recruited to centromeres by shugoshin/MEI-S332 (Sgo) [2-5]. How this protection of centromeric cohesin is removed in meiosis II is not entirely clear; we find that all the PP2A subunits remain colocalized with the cohesin subunit Rec8 at the centromere of metaphase II chromosomes. Here, we show that sister chromatid separation in oocytes depends on a PP2A inhibitor, namely I2PP2A. I2PP2A colocalizes with the PP2A enzyme at centromeres at metaphase II, independently of bipolar attachment. When I2PP2A is depleted, sister chromatids fail to segregate during meiosis II. Our findings demonstrate that in oocytes I2PP2A is essential for faithful sister chromatid segregation by mediating deprotection of centromeric cohesin in meiosis II

    Petrology of Indus River sands : a key to interpret erosion history of the Western Himalayan Syntaxis

    Get PDF
    Author Posting. © The Authors, 2004. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 229 (2005): 287-302, doi:10.1016/j.epsl.2004.11.008.The Indus River has been progressively transformed in the last decades into a tightly-regulated system of dams and channels, to produce food and energy for the rapidly growing population of Pakistan. Nevertheless, Indus River sands as far as the delta largely retain their distinct feldspar- and amphibole-rich composition, which is unique with respect to all other major rivers draining the Alpine-Himalayan belt except for the Brahmaputra. Both the Indus and Brahmaputra Rivers flow for half of their course along the India-Asia suture zone, and receive major contributions from both Asian active-margin batholiths and upper-amphibolite-facies domes rapidly exhumed at the Western and Eastern Himalayan syntaxes. Composition of Indus sands changes repeatedly and markedly in Ladakh and Baltistan, indicating overwhelming sediment flux from each successive tributary as the syntaxis is approached. Provenance estimates based on our integrated petrographic-mineralogical dataset indicate that active-margin units (Karakorum and Transhimalayan arcs) provide ~81% of the 250±50 106 t of sediments reaching the Tarbela reservoir each year. Partitioning of such flux among tributaries and among source units allows us to tentatively assess sediment yields from major sub-catchments. Extreme yields and erosion rates are calculated for both the Karakorum Belt (up to 12,500±4700 t/km2 yr and 4.5±1.7 mm/yr for the Braldu catchment) and Nanga Parbat Massif (8100±3500 t/km2 yr and 3.0±1.3 mm/yr). These values approach denudation rates currently estimated for South Karakorum and Nanga Parbat crustal-scale antiforms, and highlight the major influence that rapid tectonic uplift and focused glacial and fluvial erosion of young metamorphic massifs around the Western Himalayan Syntaxis have on sediment budgets of the Indus system. Detailed information on bulk petrography and heavy minerals of modern Indus sands not only represents an effective independent method to constrain denudation rates obtained from temperature-time histories of exposed bedrock, but also provides an actualistic reference for collision-orogen provenance, and gives us a key to interpreting provenance and paleodrainage changes recorded by clastic wedges deposited in the Himalayan foreland basin and Arabian Sea during the Cenozoic.Financial support by FIRB 2002 and PRIN 2003 to E.Garzanti

    Acute and rapid degradation of endogenous proteins by Trim-Away.

    Get PDF
    Protein depletion is a key approach to understanding the functions of a protein in a biological system. We recently developed the Trim-Away approach in order to rapidly degrade endogenous proteins without prior modification. Trim-Away is based on the ubiquitin ligase and Fc receptor TRIM21, which recognizes antibody-bound proteins and targets them for degradation by the proteasome. In a typical Trim-Away experiment, protein degradation is achieved in three steps: first, introduction of an antibody against the target protein; second, recruitment of endogenous or exogenous/overexpressed TRIM21 to the antibody-bound target protein; and third, proteasome-mediated degradation of the target protein, antibody and TRIM21 complex. Protein degradation by Trim-Away is acute and rapid, with half-lives of ~10-20 min. The major advantages of Trim-Away over other protein degradation methods are that it can be applied to any endogenous protein without prior modification; that it uses conventional antibodies that are widely available; and that it can be applied to a wide range of cell types, including nondividing primary human cells, for which other loss-of-function assays are challenging. In this protocol, we describe the detailed procedures for antibody preparation and delivery in mouse oocytes and cultured cells via microinjection and electroporation. In addition, we provide recommendations for antibody selection and validation, and for the generation of TRIM21-overexpressing cell lines for cases in which endogenous TRIM21 is limited. A typical Trim-Away experiment takes just a few hours.The research leading to these results received financial support from the Medical Research Council (MC_U105192711 and MC_U105181010), the Max Planck Society, the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 241548, European Research Council (ERC) Starting Grant no. 337415 and a Wellcome Trust Investigator Award

    Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity

    Get PDF
    The Publisher's final version can be found by following the DOI link. open access articleWith the need to understand the potential biological impact of the plethora of nanoparticles (NPs) being manufactured for a wide range of potential human applications, due to their inevitable human exposure, research activities in the field of NP toxicology has grown exponentially over the last decade. Whilst such increased research efforts have elucidated an increasingly significant knowledge base pertaining to the potential human health hazard posed by NPs, understanding regarding the possibility for NPs to elicit genotoxicity is limited. In vivo models are unable to adequately discriminate between the specific modes of action associated with the onset of genotoxicity. Additionally, in line with the recent European directives, there is an inherent need to move away from invasive animal testing strategies. Thus, in vitro systems are an important tool for expanding our mechanistic insight into NP genotoxicity. Yet uncertainty remains concerning their validity and specificity for this purpose due to the unique challenges presented when correlating NP behaviour in vitro and in vivo This review therefore highlights the current state of the art in advanced in vitro systems and their specific advantages and disadvantages from a NP genotoxicity testing perspective. Key indicators will be given related to how these systems might be used or improved to enhance understanding of NP genotoxicity
    corecore