80 research outputs found

    Pyridazinediones: versatile scaffolds for site-selective protein modification

    Get PDF
    Disulfide bonds represent an important target for site-selective protein modification, particularly via the strategy of functional re-bridging. Reduction of interchain disulfide bonds, followed by their re-bridging allows proteins to be functionalised in a site-selective manner whilst retaining the stability and integrity offered by the original bridge. This work describes the design and development of two distinct pyridazinedione-based technologies that, through the conduit of functional disulfide re-bridging, enable the synthesis of antibody – drug conjugates with hitherto unmet levels of control and homogeneity. As proteins often contain multiple disulfide bonds that are critical to conformation and stability, reagents that allow functional disulfide re-bridging without disulfide scrambling (non-native disulfide re-bridging) in multiple disulfide containing systems are critical for the success of this method. The first presented technology is a molecule that is capable of both reducing and re-bridging disulfide bonds, enabling a rapid and efficient one-reagent protocol for the functionalisation of disulfide containing proteins, moreover, it does so in such a way that native disulfide configuration is retained via a high local concentration effect. This novel pyridazinedione scaffold has been shown to functionalise a variety of therapeutically relevant proteins, including the widely used mAb Herceptin™, enabling the synthesis of homogenous antibody – drug conjugates from a native mAb. Shifting focus from homogeneity to control over drug loading, the second presented technology is a single pyridazinedione-based molecule that contains four cysteine reactive centres and only one bioorthogonal reactive handle, which enables the generation of antibody conjugates with a loading of two modules. A loading of two is desirable for many reasons, especially in the context of large, hydrophobic payloads, which are increasingly popular for use in antibody-drug conjugates. A loading of two drugs per antibody has been shown to provide an optimal balance between efficacy and biophysical properties in many cases. A reliable method based on a native antibody scaffold without the use of enzymes or harsh oxidative conditions has hitherto not been achieved. The use of native antibodies has several advantages in terms of cost, practicality, accessibility and time. Thus, a novel, reliable method of furnishing antibody conjugates with a loading of two modules starting from a native antibody scaffold was developed

    Standardization of Human Calcific Aortic Valve Disease in vitro Modeling Reveals Passage-Dependent Calcification

    Get PDF
    Aortic valvular interstitial cells (VICs) isolated from patients undergoing valve replacement are commonly used as in vitro models of calcific aortic valve disease (CAVD). Standardization of VIC calcification, however, has not been implemented, which impairs comparison of results from different studies. We hypothesized that different culture methods impact the calcification phenotype of human VICs. We sought to identify the key parameters impacting calcification in primary human VICs to standardize CAVD in vitro research. Here we report that in calcification media containing organic phosphate, termed osteogenic media (OM), primary human VICs exhibited a passage-dependent decrease in calcification potential, which was not observed in calcification media containing inorganic phosphate, termed pro-calcifying media (PM). We used Alizarin red staining to compare the calcification potential of VICs cultured in OM and PM between the first and fourth passages after cell isolation from human CAVD tissues. Human VICs showed consistent Alizarin red stain when cultured with PM in a passage-independent manner. VICs cultured in OM did not exhibit consistent calcification potential between donors in early passages and consistently lacked positive Alizarin red stain in late passages. We performed whole cell, cytoplasmic and nuclear fractionation proteomics to identify factors regulating VIC passage-dependent calcification in OM. Proteomics cluster analysis identified tissue non-specific alkaline phosphatase (TNAP) as a regulator of passage-dependent calcification in OM. We verified an association of TNAP activity with calcification potential in VICs cultured in OM, but not in PM in which VICs calcified independent of TNAP activity. This study demonstrates that media culture conditions and cell passage impact the calcification potential of primary human VICs and should be taken into consideration in cell culture models of CAVD. Our results help standardize CAVD modeling as part of a greater effort to identify disease driving mechanisms and therapeutics for this unmet medical need

    Cell-intrinsic differences between human airway epithelial cells from children and adults

    Get PDF
    Summary The airway epithelium is a protective barrier that is maintained by the self-renewal and differentiation of basal stem cells. Increasing age is a principle risk factor for chronic lung diseases, but few studies have explored age-related molecular or functional changes in the airway epithelium. We retrieved epithelial biopsies from histologically normal tracheobronchial sites from pediatric and adult donors and compared their cellular composition and gene expression profile (in laser capture-microdissected whole epithelium, fluorescence-activated cell-sorted basal cells and basal cells in cell culture). Histologically, pediatric and adult tracheobronchial epithelium were similar in composition. We observed age-associated changes in RNA sequencing studies, including higher interferon-associated gene expression in pediatric epithelium. In cell culture, pediatric cells had higher colony-formation ability, sustained in vitro growth and out-competed adult cells in a direct competitive proliferation assay. Our results demonstrate cell-intrinsic differences between airway epithelial cells from children and adults in both homeostatic and proliferative states

    New insights into the fundamental role of topological constraints as a determinant of two-way junction conformation

    Get PDF
    Recent studies have shown that topological constraints encoded at the RNA secondary structure level involving basic steric and stereochemical forces can significantly restrict the orientations sampled by helices across two-way RNA junctions. Here, we formulate these topological constraints in greater quantitative detail and use this topological framework to rationalize long-standing but poorly understood observations regarding the basic behavior of RNA two-way junctions. Notably, we show that the asymmetric nature of the A-form helix and the finite length of a bulge provide a physical basis for the experimentally observed directionality and bulge-length amplitude dependence of bulge induced inter-helical bends. We also find that the topologically allowed space can be modulated by variations in sequence, particularly with the addition of non-canonical GU base pairs at the junction, and, surprisingly, by the length of the 5′ and 3′ helices. A survey of two-way RNA junctions in the protein data bank confirms that junction residues have a strong preference to adopt looped-in, non-canonically base-paired conformations, providing a route for extending our bulge-directed framework to internal loop motifs and implying a simplified link between secondary and tertiary structure. Finally, our results uncover a new simple mechanism for coupling junction-induced topological constraints with tertiary interactions

    Longevity by RNA polymerase III inhibition downstream of TORC1

    Get PDF
    Three distinct RNA polymerases (Pols) transcribe different classes of genes in the eukaryotic nucleus1. Pol III is the essential, evolutionarily conserved enzyme that generates short, non-coding RNAs, including transfer RNAs (tRNAs) and 5S ribosomal RNA (rRNA)2. Historical focus on transcription of protein-coding genes has left the roles of Pol III in organismal physiology relatively unexplored. The prominent regulator of Pol III activity, Target of Rapamycin kinase Complex 1 (TORC1), is an important longevity determinant3, raising the question of Pol III’s involvement in ageing. Here we show that Pol III limits lifespan downstream of TORC1. We find that a reduction in Pol III extends chronological lifespan in yeast and organismal lifespan in worms and flies. Inhibiting Pol III activity in the adult worm or fly gut is sufficient to extend lifespan, and in flies, longevity can be achieved by Pol III inhibition specifically in the intestinal stem cells (ISCs). The longevity phenotype is associated with amelioration of age-related gut pathology and functional decline, dampened protein synthesis and increased tolerance of proteostatic stress. Importantly, Pol III acts downstream of TORC1 for lifespan and limiting Pol III activity in the adult gut achieves the full longevity benefit of systemic TORC1 inhibition. Hence, Pol III is a pivotal output of this key nutrient signalling network for longevity; Pol III’s growth-promoting, anabolic activity mediates the acceleration of ageing by TORC1. The evolutionary conservation of Pol III affirms its potential as a therapeutic target

    Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): an open-label, platform-adaptive randomised controlled trial

    Get PDF
    Background: The safety, effectiveness, and cost-effectiveness of molnupiravir, an oral antiviral medication for SARS-CoV-2, has not been established in vaccinated patients in the community at increased risk of morbidity and mortality from COVID-19. We aimed to establish whether the addition of molnupiravir to usual care reduced hospital admissions and deaths associated with COVID-19 in this population. Methods: PANORAMIC was a UK-based, national, multicentre, open-label, multigroup, prospective, platform adaptive randomised controlled trial. Eligible participants were aged 50 years or older—or aged 18 years or older with relevant comorbidities—and had been unwell with confirmed COVID-19 for 5 days or fewer in the community. Participants were randomly assigned (1:1) to receive 800 mg molnupiravir twice daily for 5 days plus usual care or usual care only. A secure, web-based system (Spinnaker) was used for randomisation, which was stratified by age (<50 years vs ≥50 years) and vaccination status (yes vs no). COVID-19 outcomes were tracked via a self-completed online daily diary for 28 days after randomisation. The primary outcome was all-cause hospitalisation or death within 28 days of randomisation, which was analysed using Bayesian models in all eligible participants who were randomly assigned. This trial is registered with ISRCTN, number 30448031. Findings: Between Dec 8, 2021, and April 27, 2022, 26 411 participants were randomly assigned, 12 821 to molnupiravir plus usual care, 12 962 to usual care alone, and 628 to other treatment groups (which will be reported separately). 12 529 participants from the molnupiravir plus usual care group, and 12 525 from the usual care group were included in the primary analysis population. The mean age of the population was 56·6 years (SD 12·6), and 24 290 (94%) of 25 708 participants had had at least three doses of a SARS-CoV-2 vaccine. Hospitalisations or deaths were recorded in 105 (1%) of 12 529 participants in the molnupiravir plus usual care group versus 98 (1%) of 12 525 in the usual care group (adjusted odds ratio 1·06 [95% Bayesian credible interval 0·81–1·41]; probability of superiority 0·33). There was no evidence of treatment interaction between subgroups. Serious adverse events were recorded for 50 (0·4%) of 12 774 participants in the molnupiravir plus usual care group and for 45 (0·3%) of 12 934 in the usual care group. None of these events were judged to be related to molnupiravir. Interpretation: Molnupiravir did not reduce the frequency of COVID-19-associated hospitalisations or death among high-risk vaccinated adults in the community

    Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): an open-label, platform-adaptive randomised controlled trial

    Get PDF
    BackgroundThe safety, effectiveness, and cost-effectiveness of molnupiravir, an oral antiviral medication for SARS-CoV-2, has not been established in vaccinated patients in the community at increased risk of morbidity and mortality from COVID-19. We aimed to establish whether the addition of molnupiravir to usual care reduced hospital admissions and deaths associated with COVID-19 in this population.MethodsPANORAMIC was a UK-based, national, multicentre, open-label, multigroup, prospective, platform adaptive randomised controlled trial. Eligible participants were aged 50 years or older—or aged 18 years or older with relevant comorbidities—and had been unwell with confirmed COVID-19 for 5 days or fewer in the community. Participants were randomly assigned (1:1) to receive 800 mg molnupiravir twice daily for 5 days plus usual care or usual care only. A secure, web-based system (Spinnaker) was used for randomisation, which was stratified by age (<50 years vs ≥50 years) and vaccination status (yes vs no). COVID-19 outcomes were tracked via a self-completed online daily diary for 28 days after randomisation. The primary outcome was all-cause hospitalisation or death within 28 days of randomisation, which was analysed using Bayesian models in all eligible participants who were randomly assigned. This trial is registered with ISRCTN, number 30448031.FindingsBetween Dec 8, 2021, and April 27, 2022, 26 411 participants were randomly assigned, 12 821 to molnupiravir plus usual care, 12 962 to usual care alone, and 628 to other treatment groups (which will be reported separately). 12 529 participants from the molnupiravir plus usual care group, and 12 525 from the usual care group were included in the primary analysis population. The mean age of the population was 56·6 years (SD 12·6), and 24 290 (94%) of 25 708 participants had had at least three doses of a SARS-CoV-2 vaccine. Hospitalisations or deaths were recorded in 105 (1%) of 12 529 participants in the molnupiravir plus usual care group versus 98 (1%) of 12 525 in the usual care group (adjusted odds ratio 1·06 [95% Bayesian credible interval 0·81–1·41]; probability of superiority 0·33). There was no evidence of treatment interaction between subgroups. Serious adverse events were recorded for 50 (0·4%) of 12 774 participants in the molnupiravir plus usual care group and for 45 (0·3%) of 12 934 in the usual care group. None of these events were judged to be related to molnupiravir.InterpretationMolnupiravir did not reduce the frequency of COVID-19-associated hospitalisations or death among high-risk vaccinated adults in the community

    High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations.

    Get PDF
    The impact of somatic structural variants (SVs) on gene expression in cancer is largely unknown. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data and RNA sequencing from a common set of 1220 cancer cases, we report hundreds of genes for which the presence within 100 kb of an SV breakpoint associates with altered expression. For the majority of these genes, expression increases rather than decreases with corresponding breakpoint events. Up-regulated cancer-associated genes impacted by this phenomenon include TERT, MDM2, CDK4, ERBB2, CD274, PDCD1LG2, and IGF2. TERT-associated breakpoints involve ~3% of cases, most frequently in liver biliary, melanoma, sarcoma, stomach, and kidney cancers. SVs associated with up-regulation of PD1 and PDL1 genes involve ~1% of non-amplified cases. For many genes, SVs are significantly associated with increased numbers or greater proximity of enhancer regulatory elements near the gene. DNA methylation near the promoter is often increased with nearby SV breakpoint, which may involve inactivation of repressor elements
    corecore