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High-coverage whole-genome analysis of 1220
cancers reveals hundreds of genes deregulated by
rearrangement-mediated cis-regulatory alterations
Yiqun Zhang1, Fengju Chen1, Nuno A. Fonseca 2, Yao He3,4, Masashi Fujita 5, Hidewaki Nakagawa5,

Zemin Zhang3,4, Alvis Brazma 2, PCAWG Transcriptome Working Group, PCAWG Structural Variation

Working Group, Chad J. Creighton 1,6,7,8* & PCAWG Consortium

The impact of somatic structural variants (SVs) on gene expression in cancer is largely

unknown. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes

(PCAWG) Consortium, which aggregated whole-genome sequencing data and RNA

sequencing from a common set of 1220 cancer cases, we report hundreds of genes for which

the presence within 100 kb of an SV breakpoint associates with altered expression. For the

majority of these genes, expression increases rather than decreases with corresponding

breakpoint events. Up-regulated cancer-associated genes impacted by this phenomenon

include TERT, MDM2, CDK4, ERBB2, CD274, PDCD1LG2, and IGF2. TERT-associated break-

points involve ~3% of cases, most frequently in liver biliary, melanoma, sarcoma, stomach,

and kidney cancers. SVs associated with up-regulation of PD1 and PDL1 genes involve ~1% of

non-amplified cases. For many genes, SVs are significantly associated with increased num-

bers or greater proximity of enhancer regulatory elements near the gene. DNA methylation

near the promoter is often increased with nearby SV breakpoint, which may involve inacti-

vation of repressor elements.
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Functionally relevant DNA alterations in cancer extend well
beyond exomic boundaries. One notable example of this
involves TERT, for which both non-coding somatic point

mutations in the promoter or genomic rearrangements in
proximity to the gene have been associated with TERT
upregulation1–3. Genomic rearrangements in cancer are common
and often associated with copy number alterations4,5. Breakpoints
associated with rearrangement can potentially alter the regulation
of nearby genes, e.g., by disrupting specific regulatory elements or
by translocating cis-regulatory elements from elsewhere in the
genome into close proximity to the gene. Recent examples of
rearrangements leading to “enhancer hijacking”—whereby
enhancers from elsewhere in the genome are juxtaposed near
genes, leading to overexpression—include a distal GATA2
enhancer being rearranged to ectopically activate EVI1 in leuke-
mia6, activation of GFI1 family oncogenes in medulloblastoma7,
and 5p15.33 rearrangements in neuroblastoma juxtaposing strong
enhancer elements to TERT8. By integrating somatic copy
alterations, gene expression data, and information on topologi-
cally associating domains (TADs), a recent pan-cancer study
uncovered 18 genes with overexpression resulting from rearran-
gements of cis-regulatory elements (including enhancer hijacking)9.
Genomic rearrangement may also disrupt the boundary sites of
insulated chromosome neighborhoods, resulting in gene
upregulation10.

The PCAWG Consortium aggregated whole-genome sequen-
cing data from 2658 cancers across 38 tumor types generated by
the ICGC and TCGA projects. These sequencing data were rea-
nalyzed with standardized, high-accuracy pipelines to align to
the human genome (reference build hs37d5) and identify germ-
line variants and somatically acquired mutations11. These data
involve a comprehensive and unified identification of somatic
substitutions, indels, and structural variants (SVs, representing
genomic rearrangement events, each event involving two break-
points from different genomic coordinates becoming fused
together), based on “consensus” calling across three independent
algorithmic pipelines, together with initial basic filtering, quality
checks, and merging11. Whole-genome sequencing offers much
better resolution in SV inference over that of whole exome data or
SNP arrays4,9. These data represent an opportunity for us to
survey this large cohort of cancers for somatic SVs with break-
points located in proximity to genes. For a sizeable subset of cases
in the PCAWG cohort, data from other platforms in addition to
whole-genome sequencing, such as RNA expression or DNA
methylation, are available for integrative analyses, with 1220 cases
having both whole-genome and RNA sequencing.

While SVs can result in two distant genes being brought
together to form fusion gene rearrangements (e.g., BCR-ABL1 or
TMPRSS2-ERG)12, this present study focuses on SVs impacting
gene regulation in the absence of fusion events or copy number
alterations, e.g., SVs with breakpoints occurring upstream or
downstream of the gene and involving rearrangement of cis-
regulatory elements. In a recent study involving integration of
gene expression with low-pass whole-genome sequencing for
more than 1000 cancer cases13, evidence for a widespread impact
of somatic SVs on gene expression patterns was observed, though
a noted limitation with that study involved the level of coverage
(~6–8×) of low-pass sequencing. With a genome-wide analysis
involving a large sample size and much deeper sequencing cov-
erage (~30–60×), information from multiple genes may be
leveraged more effectively, in order to identify common features
involving the observed disrupted regulation of genes impacted by
somatic genomic rearrangement.

In this present study, we utilize the PCAWG datasets in order
to analyze high coverage whole-genome sequencing data from
1220 individuals. Integrating SV calls with gene expression data,

we observe a widespread impact of somatic structural variants on
gene expression patterns, independent of copy number altera-
tions, involving key oncogenes and tumor suppressor genes.
Mechanisms involved with SV-mediated gene deregulation, as
observed here, include enhancer hijacking and altered DNA
methylation.

Results
Widespread impact of somatic SVs on gene expression.
Inspired by recent observations in kidney cancer3,14, neuro-
blastoma8,15, and B-cell malignancies16, of recurrent genomic
rearrangements affecting the chromosomal region proximal to
TERT and resulting in its upregulation, we sought to carry out a
pan-cancer analysis of all coding genes, for ones appearing
similarly affected by somatic rearrangement. We referred to a
dataset of somatic SVs called for high coverage whole cancer
genomes of 2658 patients, representing more than 20 different
cancer types and compiled and harmonized by the PCAWG
initiative from 47 previous studies (Supplementary Data 1). Gene
expression profiles were available for 1220 of the 2658 patients.
We set out to systematically look for genes for which the nearby
presence of an SV breakpoint could be significantly associated
with changes in expression. In addition to the 0–20 kb region
upstream of each gene (previously involved with rearrangements
near TERT3), we also considered SV breakpoints occurring
20–50 kb upstream of a gene, 50–100 kb upstream of a gene,
within a gene body, or 0–20 kb downstream of a gene (Fig. 1a).
(SV breakpoints located within a given gene were not included in
the other upstream or downstream SV sets for that same gene.)
For each of the above SV groups, we assessed each gene for
correlation between associated SV event and expression. As each
cancer type as a group would have a distinct molecular sig-
nature17, and as genomic rearrangements may be involved in
copy alterations4,13, both of these were factored into our analysis,
using linear models.

For each of the genomic regions relative to genes that were
considered (i.e., genes with at least three samples associated with
an SV breakpoint within the given region), we found widespread
associations between SV event and expression, after correcting for
expression patterns associated with tumor type or copy number
(Fig. 1b and Supplementary Fig. 1a and Supplementary Data 2).
For gene body, 0–20 kb upstream, 20–50 kb upstream, 50–100 kb
upstream, and 0–20 kb downstream regions, the numbers of
significant genes at p < 0.001 (corresponding to estimated false
discovery rates18 of <4%, Supplementary Data 2) were 518, 384,
416, 496, and 302, respectively. For each of these gene sets, many
more genes were positively correlated with SV event (i.e.,
expression was higher when SV breakpoint was present) than
were negatively correlated (on the order of 95% versus 5%).
Permutation testing of the 0–20 kb upstream dataset (randomly
shuffling the SV event profiles and computing correlations with
expression 1000 times) indicated that the vast majority of the
significant genes observed using the actual dataset would not be
explainable by random chance or multiple testing (with
permutation results yielding an average of 30 “significant” genes
with standard deviation of 5.5, compared with 384 significant
genes found for the actual dataset). Without correcting for copy
number, even larger numbers of genes with SVs associated with
increased expression were found (Fig. 1b), indicating that many
of these SVs would be strongly associated with copy gain. Many
of the genes found significant for one SV group were also
significant for other SV groups (Fig. 1c). Tumor purity, tumor
ploidy, and total number of SV breakpoints were not found to
represent significant confounders (Supplementary Fig. 1b). High
numbers of statistically significant genes were also found when
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Fig. 1 Structural Variant (SV) breakpoints associated with altered expression of nearby genes. a Numbers of SV breakpoints identified as occurring
within a gene body, 0–20 kb upstream of a gene, 20–50 kb upstream of a gene, 50–100 kb upstream of a gene, or 0–20 kb downstream of a gene. For each
SV set, the breakdown by alteration class is indicated. SVs with breakpoints located within a given gene are not included in the other upstream or
downstream SV sets for that same gene. b For each of the SV sets from part (a), numbers of significant genes (p < 0.001, FDR < 4%), showing correlation
between expression and associated SV event. Numbers above and below zero point of y-axis denote positively and negatively correlated genes,
respectively. Linear regression models also evaluated significant associations when correcting for cancer type (red) and for both cancer type and gene copy
number (green). c Heat map of significance patterns for genes from part (b) (from the model correcting for both cancer type and gene copy number). Red,
significant positive correlation; blue, significant negative correlation; black, not significant (p > 0.05); gray, not assessed (<3 SV events for given gene in the
given genomic region). d Significantly enriched Gene Ontology (GO) terms for genes positively correlated (p < 0.001 and FDR < 4%) with occurrence
of SV upstream of the gene (for either 0–20 kb, 20–50 kb, or 50–100 kb SV sets). P-values by one-sided Fisher’s exact test. e Patterns of SV versus
expression for selected gene sets from part (d) (telomerase holoenzyme complex, top; eukaryotic translation initiation factor 2B complex, middle; insulin
receptor binding, bottom). Differential gene expression patterns relative to the median across sample profiles. See also Supplementary Data 1, 2 and
Supplementary Fig. 1.
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examining regions further upstream or downstream of genes, up
to 1Mb (Supplementary Fig. 1c).

Key driver genes in cancer impacted by nearby SV breakpoints.
Genes with increased expression associated with nearby SV
breakpoints included many genes with important roles in cancer
(Table 1), such as TERT (significant with p < 0.001 for regions
from 0–20 kb downstream to 20–50 kb upstream of the gene),
MYC (significant for gene body SV breakpoints), MDM2 (regions
from 0–20 kb downstream to 50–100 kb upstream), CDK4
(0–20 kb downstream and 20–100 kb upstream), ERBB2 (gene
body to 50–100 kb upstream), CD274 (0–20 kb downstream to
50–100 kb upstream), PDCD1LG2 (0–20 kb downstream to
20–50 kb upstream), and IGF2 (0–20 kb downstream and
50–100 kb upstream). Genes with decreased expression associated
with SV breakpoints located within the gene included PTEN19

(n= 50 cases with an SV breakpoint out of 1220 cases with
expression data available), STK11 (n= 15), KEAP1 (n= 5), TP53
(n= 22), RB1 (n= 55), and SMAD4 (n= 18), where genomic
rearrangement would presumably have a role in disrupting
important tumor suppressors; for other genes, SV breakpoints
within the gene could potentially impact intronic regulatory ele-
ments, or could represent potential fusion events (though in a
small fraction of cases)12,13. Examining the set of genes positively
correlated (p < 0.001, FDR < 4%) with occurrence of SV break-
point upstream of the gene (for either 0–20 kb, 20–50 kb, or
50–100 kb SV sets), enriched gene categories (Fig. 1d) included
G-protein coupled receptor activity (70 genes), telomerase
holoenzyme complex (TERT, PTGES3, SMG6), eukaryotic trans-
lation initiation factor 2B complex (EIF2S1, EIF2B1, EIF2B5),
keratin filament (15 genes), and insulin receptor binding (DOK6,
DOK7, IGF2, IRS4, FRS2, FRS3, PTPN11). When taken together,

SVs involving the above categories of genes would potentially
impact a substantial fraction of cancer cases, e.g., on the order of
2–5% of cases across various types (Fig. 1e). Gene amplification
events (defined as five or more copies) could be observed for a
number of genes associated with SVs, but amplification alone in
many cases would not account for the elevated gene expression
patterns observed (Fig. 1e).

Translocations involving the region 0–100 kb upstream of TERT
were both inter- and intrachromosomal (Fig. 2a and Supplementary
Data 3) and included 170 SV breakpoints and 84 cancer cases, with
the most represented cancer types including liver-biliary (n= 29
cases), melanoma (n= 17 cases), sarcoma (n= 15 cases), and
kidney (n= 9 cases). Most of these SV breakpoints were found
within 20 kb of the TERT start site (Fig. 2b), which represented the
region where correlation between SV events and TERT expression
was strongest (Fig. 2c, d, p < 1E−14, linear regression model). In
neuroblastoma, translocation of enhancer regulatory elements near
the promoter was previously associated with TERT upregulation8,15.
Here, in a global analysis, we examined the number of enhancer
elements20 within a 0.5Mb region upstream of each rearrangement
breakpoint occurring in proximity to TERT (for breakpoints where
the breakpoint mate was oriented away from TERT). While for
unaltered TERT, 21 enhancer elements are located 0.5Mb
upstream of the gene, on the order of 30 enhancer elements
on average were within the 0.5Mb region adjacent to the
TERT SV breakpoint (Fig. 2e), representing a significant increase
(p < 1E−6, paired t-test). A trend was also observed, by which SV
breakpoints closer to the TERT start site were associated with a
larger number of enhancer elements (Fig. 2d, p < 0.03, Spearman’s
correlation).

Consistent with observations elsewhere4,13, genomic rearran-
gements could be associated here with copy alterations for a large
number of genes (Fig. 1b), including genes of particular interest

Table 1 Selected genes positively correlated in expression with occurrence of upstream SV breakpoint.

Region: 0–20 kb upstream 20–50 kb upstream 50–100 kb upstream Gene body 0–20 kb downstream

Gene n t n t n t n t n t

CDK4 16 2.39 27 8.67 23 5.94 13 1.92 21 5.93
ERBB2 13 3.66 17 7.99 34 11.87 23 8.55 15 2
MDM2 17 9.5 22 7.9 21 9.52 20 8.84 19 8.35
TERT 31 8.08 9 2.34 8 0.73 10 7.39 5 6.81
CDK12 7 0.33 14 3.78 14 −0.02 41 2.8 11 3.01
HMGA2 10 3.71 8 4.31 15 1.71 24 2.16 6 −0.84
EGFR 8 1.69 12 4.39 9 2.41 31 5.57 6 4.01
TBL1XR1 3 0.38 9 3.51 9 1.11 32 2.23 4 2.02
MYCL 4 2.23 5 −0.14 10 4.24 0 NA 5 3.05
CCND3 3 2.97 6 4.01 7 4.18 15 4.53 5 1.44
CLTC 7 1.99 4 1.66 5 3.98 14 0.43 6 2.93
PDCD1LG2 3 3.8 8 4.02 4 0.97 9 7.81 6 5.33
PTPN11 4 2.83 3 3.88 7 2.59 7 1.1 3 −0.61
SMARCE1 2 NA 6 4.7 6 3.29 6 0.75 1 NA
PDGFRA 3 3.81 4 0.07 6 0.04 7 1.51 2 NA
NF1 1 NA 3 4.44 8 2.87 65 −2.98 0 NA
CD274 3 3.33 3 1.64 6 1.42 6 5.27 4 5.1
PRKAR1A 2 NA 3 1.3 3 3.39 4 2.29 1 NA
MYB 5 −0.18 3 3.58 0 NA 1 NA 1 NA
FOXL2 2 NA 3 5.27 3 −0.48 0 NA 2 NA
BCL7A 3 2.54 1 NA 3 3.38 7 1.76 3 2.86
SS18 0 NA 3 3.57 4 0.49 8 3.57 1 NA
TFE3 3 3.45 1 NA 2 NA 2 NA 0 NA
NKX2-1 1 NA 3 4.24 2 NA 0 NA 1 NA

Table lists the genes positively correlated in expression (p < 0.001 and FDR < 4%, corrected for copy number and cancer type) with occurrence of upstream SV breakpoint, with the gene being previously
associated with cancer. Previous cancer association based on membership in the Sanger Cancer Consensus Gene list (http://www.sanger.ac.uk/science/data/cancer-gene-census). Number of cancer
cases with SV in given region (n) is from the set of 1220 cases with both expression and SV data. t-statistic (t) based on linear regression model incorporating both cancer type and copy number in
addition to SV event; a t-statistic of 3.3 or more approximates to p < 0.001 or FDR < 4%. Genes with p < 0.001 for 0–20 kb upstream, 20–50 kb upstream, or 50–100 kb upstream regions are included
here. “NA”, not assessed (less than three cases involved). See also Supplementary Data 2
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such as TERT and MDM2 (Fig. 3a). However, copy alteration
alone would not account for all observed cases of increased
expression in conjunction with SV event. For example, with a
number of key genes (including TERT, MDM2, ERBB2, CDK4),
when all amplified cases (i.e., with five or more gene copies) were
grouped into a single category, regardless of SV breakpoint

occurrence, the remaining SV-involved cases showed significantly
increased expression (Fig. 3b). Regarding TERT in particular, a
number of types of genomic alteration may act upon transcrip-
tion, including upstream SV breakpoint, TERT amplification21,
promoter mutations1,2, promoter viral integration22, and MYC
amplification23. Within the PCAWG cohort of 2658 cancer cases,
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933 (35%) were altered according to at least one of the above
alteration classes, with each class being associated with increased
TERT mRNA expression (Fig. 3c). Upstream SV breakpoints in
particular were associated with higher TERT as compared with
promoter mutation or amplification events.

SVs associated with CD274 (PD1) and PDCD1LG2 (PDL1)—
genes with important roles in the immune checkpoint pathway—
were associated with increased expression of these genes (Fig. 4a
and Supplementary Data 4). Out of the 1220 cases with gene
expression data, 19 harbored an SV breakpoint in the region
involving the two genes, both of which reside on chromosome 9
in proximity to each other (Fig. 4b, considering the region 50 kb
upstream of CD274 to 20 kb downstream of PDCD1LG2). These
19 cases included lymphoma (n= 5), lung (4), breast (2), head
and neck (2), stomach (2), colorectal (1), and sarcoma (1). Six of
the 19 cases had amplification of one or both genes, though on
average cases with associated SV had higher expression than cases
with amplification but no SV breakpoint (Fig. 4a, p < 0.0001 t-test
on log-transformed data). For most of the 19 cases, the SV
breakpoint was located within the boundaries of one of the genes
(Fig. 4a), while both genes tended to be elevated together
regardless of the SV breakpoint position (Fig. 4b). We examined
the 19 cases with associated SVs for fusions involving either
CD274 or PDCD1LG2, and we identified a putative fusion
transcript for RNF38->PDCD1LG2 involving three cases, all of
which were lymphoma. No fusions were identified involving
CD274.

Translocated enhancers and altered DNA methylation. Similar
to analyses focusing on TERT (Fig. 2d), we examined SVs
involving other genes for potential translocation of enhancer
elements. For example, like TERT, SVs with breakpoints 0–20 kb
upstream of CDK4 were associated with an increased number of
upstream enhancer elements as compared with that of the unal-
tered gene (Fig. 5a); however, SV breakpoints upstream ofMDM2
were associated with significantly fewer enhancer elements
compared with that of the unaltered region (Fig. 5a). For the set
of 1233 genes with at least 7 SV breakpoints 0–20 kb upstream
and with breakpoint mate on the distal side from the gene, the
numbers of enhancer elements 0.5 Mb region upstream of rear-
rangement breakpoints was compared with the number for the
unaltered gene (Fig. 5b and Supplementary Data 5). Of these
genes, 24% showed differences at a significance level of p < 0.01
(paired t-test, with ~12 nominally significant genes being
expected by chance, FDR= 4%). However, for most of these
genes, the numbers of enhancer elements was decreased on
average with the SV breakpoint rather than increased (195 versus
103 genes, respectively), indicating that translocation of greater
numbers of enhancers might help explain the observed upregu-
lation for some but not all genes. For other genes (e.g., HOXA13
and CCNE1), enhancer elements on average were positioned in
closer proximity to the gene as a result of the genomic rearran-
gement (Fig. 5c). Of 829 genes examined (with at least 5 SV

breakpoints 0–20 kb upstream and with breakpoint mate on the
distal side from the gene, where the breakpoint occurs between
the gene start site and its nearest enhancer in the unaltered sce-
nario), 8.3% showed a significant decrease (p < 0.01, paired t-test,
FDR= 10.8%) in distance to the closest enhancer on average as a
result of the SV breakpoint, as compared with 1% showing a
significance increase in distance.

We went on to examine genes impacted by nearby SV
breakpoints for associated patterns of DNA methylation. Taking
the entire set of 8256 genes with associated CpG island probes
represented on the 27K DNA methylation array platform
(available for samples from The Cancer Genome Atlas), the
expected overall trend24 of inverse correlations between DNA
methylation and gene expression were observed (Fig. 6a and
Supplementary Fig. 2 and Supplementary Data 6). However, for
the subset of 263 genes positively correlated in expression with
occurrence of upstream SV breakpoint (p < 0.001 and FDR < 4%,
0–20 kb, 20–50 kb, or 50–100 kb SV sets), the methylation-
expression correlations were less skewed toward negative
(p= 0.0001 by t-test, comparing the two sets of correlation
distributions in Fig. 5a). Genes positively correlated between
expression and methylation included TERT and MDM2, with
many of the same genes also showing a positive correlation
between DNA methylation and nearby SV breakpoint (Fig. 6a).
Regarding TERT, a CpG site located in close proximity to its core
promotor is known to contain a repressive element8,25; non-
methylation results in the opening of CTCF binding sites and the
transcriptional repression of TERT25. In the PCAWG cohort, SV
breakpoints occurring 0–20 kb upstream of the gene were
associated with increased CpG island methylation (Fig. 6b), while
SV breakpoints 20–50 kb upstream were not; TERT promoter
mutation was also associated with increased methylation (Fig. 6c).

Discussion
Using a unique dataset of high coverage whole-genome sequen-
cing and gene expression on tumors from a large number of
patients and involving a wide range of cancer types, we have
shown here how genomic rearrangement of regions nearby genes,
leading to gene upregulation—a phenomenon previously observed
for individual genes such as TERT—globally impacts a large
proportion of genes and of cancer cases. Genomic rearrangements
involved with upregulation of TERT in particular have further-
more been shown here to involve a wide range of cancer types,
expanded from previous observations made in individual cancer
types such as kidney chromophobe and neuroblastoma. While
many of the genes impacted by genomic rearrangement in this
present study likely represent passengers rather than drivers of the
disease, many other genes with canonically established roles in
cancer would be impacted. Outside information can be brought to
bear in distinguishing driver from passenger genes, including
significant mutation or copy number alteration patterns26,27,
experimental data, and domain-specific expertise. Though any
given gene may not be impacted in a large percentage of cancer

Fig. 2 SVs associated with TERT and its increased expression. a Circos plot showing all intra- and interchromosomal rearrangements 0–100 kb from the
TERT locus. b By cancer type, SV breakpoint locations within the region ~100 kb upstream of TERT. Curved line connects two breakpoints common to the
same SV. TERT promoter, CpG Islands, and CTCF and Myc binding sites along the same region are also indicated. c Gene expression levels of TERT
corresponding to SVs with breakpoints located in the genomic region 0–20 kb downstream to 100 kb upstream of the gene (116 SV breakpoints involving
47 cases). d Where data available, gene expression levels of TERT corresponding to SVs from part (b). Expression levels associated with TERT promoter
(PM) mutation are also represented. Median expression for unaltered cases represents cases without TERT alteration (SV, promoter mutation,
amplification, viral integration) orMYC amplification. For part (d), where multiple SVs were found in the same tumor, the SV breakpoint that was closest to
the TERT start site was used for plotting the expression. e Numbers of enhancer elements within a 0.5Mb region upstream of each rearrangement
breakpoint are positioned according to breakpoint location. For unaltered TERT, 21 enhancer elements were 0.5Mb upstream of the gene. See also
Supplementary Data 3.
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cases (the more frequently SV-altered gene TERT involving <3%
of cancers surveyed), the multiple genes involved leads to a large
cumulative effect in terms of absolute numbers of patients. The
impact of somatic genomic rearrangements on altered cis-regula-
tion should therefore be regarded as an important driver
mechanism in cancer, alongside that of somatic point mutations,
copy number alteration, epigenetic silencing, gene fusions, and

germline polymorphisms. Our results have implications for per-
sonalized or precision medicine, which tends to be primarily
focused on mutations within coding regions.

While the role of genomic rearrangements in altering the cis-
regulation of specific genes within specific cancer types has been
previously observed, our present pan-cancer study demonstrates
that this phenomenon is more extensive and impacts a far greater
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number of genes than may have been previously thought. A recent
study by Weischenfeldt et al.9, utilizing SNP arrays to estimate SV
breakpoints occurring within TADs (which confine physical
and regulatory interactions between enhancers and their target
promoters), uncovered 18 genes (including TERT and IRS4) in
pan-cancer analyses and 98 genes (including IGF2) in cancer type-
specific analyses with overexpression associated with rearrange-
ments involving nearby or surrounding TADs. Our present study
using PCAWG datasets identifies hundreds of genes impacted by
SV-altered regulation, far more than the Weischenfeldt study. In
contrast to the Weischenfeldt study, our study could take advantage
of high coverage whole-genome sequencing over SNP arrays, with
the former allowing for much better resolution in identifying SVs,
including those not associated with copy alterations. In addition,
while TADs represent very large genomic regions, often extending
over 1Mb, our study pinpoints SV with breakpoints acting within
relatively close distance to the gene, e.g., within 20 kb for many
genes. In principle, genomic rearrangements could impact a num-
ber of regulatory mechanisms, not necessarily limited to enhancer
hijacking or TAD disruption, and genes may be altered differently
in different samples. The analytical approach of our present study
has the advantage of being able to identify robust associations
between SVs and expression, without making assumptions as to the
specific mechanism.

Future efforts can further explore the mechanisms involved
with specific genes deregulated by nearby genomic rearrange-
ments. Regarding TERT-associated SVs, for example, previously
observed increases in DNA methylation of the affected region had
been previously thought to be the result of massive chromatin
remodeling brought about by juxtaposition of the TERT locus to
strong enhancer elements8, which is supported by observations
made in this present study involving multiple cancer types.
However, not all genes found here to be deregulated by SVs
would necessarily follow the same patterns as those of TERT. For
example, not all of the affected genes would have repressor ele-
ments being inactivated by DNA methylation, and some genes
such as MDM2 do not show an increase in enhancer numbers
with associated SV breakpoints but do correlate positively
between expression and methylation. There is likely no single
mechanism that would account for all of the affected genes,
though some mechanisms may be common to multiple genes.
Integration of other types of information (e.g., other genome
annotation features, data from other platforms, or results of
functional studies) may be combined with whole-genome
sequencing datasets of cancer, in order to gain further insights
into the global impact of non-exomic alterations, where the
datasets assembled by PCAWG in particular represent a valuable
resource.
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Methods
Datasets. Datasets of structural variants (SVs), RNA expression, somatic
mutation, and copy number were generated as part of the Pan-Cancer Analysis
of Whole Genomes (PCAWG) project11. The PCAWG workflows are also
available as Docker images through Dockstore enabling researchers to replicate
the steps involved in the data assembly11. In all, 2658 patients with whole-
genome data were represented in the PCAWG datasets, spanning a range of
cancer types (bladder, sarcoma, breast, liver-biliary, cervix, leukemia, colorectal,
lymphoma, prostate, eosophagus, stomach, central nervous system or “cns”,
head/neck, kidney, lung, skin, ovary, pancreas, thyroid, uterus). Cancer mole-
cular profiling data were generated through informed consent as part of pre-
viously published studies and analyzed in accordance with each original study’s
data use guidelines and restrictions. Of the 2658 donors (Supplementary Data 1)
included among the whitelist (acceptable for all analyses) and graylist (excluded
from some analyses carried out as part of PCAWG-led efforts), 1220 had RNA
data, 32 of which were graylisted. In accordance with the PCAWG consoritium
policy, we included the graylisted cases in our analysis, as these were found to
have no issues pertaining to our integration analysis approaches involving RNA
and SV data.

For SVs, calls were made by three different data centers using different
algorithms; calls made by at least two algorithms were used in the downstream
analyses, along with additional filtering criteria being used as described by the
PCAWG consortium11. Somatic SVs were defined by comparison between the
tumor and matched normal. The consensus SV calls are available from synapse
(https://www.synapse.org/#!Synapse:syn7596712).

For copy number, the calls made by the Sanger group using the Ascat NGS
algorithm11 with default parameters were used, which data are available at the
ICGC Data Portal (https://dcc.icgc.org/pcawg). Gene copies of five or more were
called as amplification events. For somatic mutation of TERT promoter, PCAWG
variant calls, as well as any additional data available from the previous individual
studies3,11,22, were used (Supplementary Data 1). TERT promoter viral
integrations were obtained from ref. 22. Of the 2658 cases, RNA-seq data were
available for 1220 cases. For RNA-seq data, alignments by both STAR (version
2.4.0i,2-pass) and TopHat2 (version 2.0.12) were used to generated a combined
set of expression calls12; alignment parameters and other methodology details are
provided at ref. 12. FPKM-UQ values (where UQ= upper quartile of fragment
count to protein coding genes) were used (dataset available at https://www.
synapse.org/#!Synapse:syn5553991). Where a patient had multiple tumor sample
profiles (this scenario involving a handful of patients), one profile was randomly
selected to represent the patient. Overall, RNA-seq samples derived from a
similar tissue of origin had similar expression profiles; more specifically, tumor
samples from donors derived from different projects were similar and also tissue
derived from GTEx versus matched normal tissue were similar, indicating that
technical batch effects did not represent a major confounder12.

In a concerted effort to reduce batch effects due to the use of different
computational pipelines in the initial studies, the PCAWG consortium systematically
reanalyzed all of the RNA-seq libraries from the individual projects using a unified
RNA-seq analysis pipeline, as detailed in ref. 12. However, it is conceivable that there
may be batch effects (e.g., from the isolation and handling of the RNA, library
construction and sequencing factors etc.) that have not been possible to take into
account. At the same time, where this present study involves integration between
orthogonal data platforms, such data integration should be less susceptible to batch
effects, as any source of technical variation in one data platform would be less likely to
be manifested in the other platform. In addition, our linear models relating SV
breakpoint patterns with gene expression (described below) incorporated cancer type
as a covariate, and so any genes selected as having significant correlations between SV
breakpoints and expression must arise above any associations would be best explained
on the basis of cancer type alone. For example, genes that are generally high or low
across specific tumor types (whether by biology or by batch effect), irrespective of SV
breakpoint pattern, would not be selected as significant.

DNA methylation profiles had been generated for 771 cases by The Cancer
Genome Atlas using either the Illumina Infinium HumanMethylation450 (HM450)
or HumanMethylation27 (HM27) BeadChips (Illumina, San Diego, CA), as
previously described12. To help correct for batch effects between methylation data
platforms (HM450 versus HM27), we used the combat software12 with R software
version 3.0 (with 27K vs 450K as the “batch” and cancer type as the “experimental
group”, R code available at https://www.bu.edu/jlab/wp-assets/ComBat/
Download_files/ComBat.R), as we have done in previous pan-cancer studies
utilizing The Cancer Genome Atlas methylation datasets14,28–30. For each of 8226
represented genes, an associated methylation array probe mapping to a CpG island
was assigned; where multiple probes referred to the same gene, the probe with the
highest variation across samples was selected for analysis. Correlations between
DNA methylation and gene expression were assessed using logit-transformed
methylation data and log-transformed expression data and Pearson’s correlations.

Integrative analyses between SVs and gene expression. For each of a number
of specified genomic region windows in relation to genes, we constructed a somatic
SV breakpoint matrix by annotating for every sample the presence or absence of at
least one SV breakpoint within the given region. For the set of SV breakpoints
associated with a given gene within a specified region in proximity to the gene (e.g.,

0–20 kb upstream, 20–50 kb upstream, 50–100 kb upstream, 0–20 kb downstream,
or within the gene body), correlation between expression of the gene and the
presence of at least one SV breakpoint was assessed using a linear regression model
(with log-transformed expression values). In addition to modeling expression as a
function of SV event, models incorporating cancer type (one of the 20 major types
listed above) as a factor in addition to SV, and models incorporating both cancer
type and copy number in addition to SV, were also considered. For these linear
regression models, genes with at least three samples associated with an SV break-
point within the given region were considered. Genes for which SVs were significant
(p < 0.001, FDR < 4%) after correcting for both cancer type and copy were explored
in downstream analyses. Results from both the SV only model and results from the
SV+cancer type models were also highlighted in Fig. 1 and provided in Supple-
mentary Data 2, but the p-values from those models were not used in selecting for
genes or SVs of interest for follow-up analyses. R software version 3.0 and lm
function was used, with source code available as part of Supplementary Data 7.

The method of Storey and Tibshirani18 was used to estimate false discovery
rates (FDR) for significant genes. For purposes of FDR, only genes that had SV
breakpoints falling within the given region relative to the gene in at least three cases
were tested; for example, for the 0–20 kb upstream region, 6257 genes were tested,
where 384 genes were significant at a nominal p-value of < 0.001 (using a stringent
cutoff, with ~6 genes expected by chance due to multiple testing, or FDR < 2%); the
other genomic region windows yielded similar results. For each genomic region
window, the FDR for genes significant at the p < 0.001 level did not exceed 4%. In
addition, permutation testing of the 0–20 kb upstream dataset was carried out,
whereby the SV events were randomly shuffled (by shuffling the patient ids) and
the linear regression models (incorporating both cancer type and copy number)
were used to compute expression versus permuted SV breakpoint associations; for
each of 1000 permutation tests, the number of nominally significant genes at p <
0.001 was computed and compared with results from the actual datasets. Of the
25,259 genes represented in the entire RNA-seq dataset, 20,859 genes had at least
three samples with SV breakpoints for at least one of the five regions tested (gene
body, 0–20 kb upstream, 20–50 kb upstream, 50–100 kb upstream, 0–20 kb
downstream). The number of genes significant (nominal p < 0.001) for any one of
the five regions was 1575. By a very conservative estimate, the number of genes that
might arise by multiple testing in relation to the 1575 gene set should not exceed
5 × 0.001 × 20859= 104 (five genomic regions × p-value threshold used × number
of genes tested for at least one region), which would correspond to a global
estimated FDR of ~6.6%.

Integrative analyses using enhancer genomic coordinates. Gene boundaries
and locations of enhancer elements were obtained from Ensembl (GRCh37 build).
Enhancer elements found in multiple cell types (using Ensembl “Multicell” filter,
accessed April 1, 2016) were used20. As previously described20, the Ensembl team
first reduced all available experimental data for each cell type into a cell type-
specific annotation of the genome; consensus “Multicell” regulatory features of
interest, including predicted enhancers, were then defined. For each SV breakpoint
0–20 kb upstream of a gene, the number of enhancer elements near the gene that
would be represented by the rearrangement was determined (based on the orien-
tation of the SV breakpoint mate). Only SVs with breakpoints on the distal side
from the gene were considered in this analysis; in other words, for genes on the
negative strand, the upstream sequence of the breakpoint should be fused relative
to the breakpoint coordinates, and for genes on the positive strand, the down-
stream sequence of the breakpoint (denoted as negative orientation) should be
fused relative to the breakpoint coordinates.

Statistical analysis. All p-values were two-sided unless otherwise specified.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data used in this study are publicly available. Somatic and germline variant calls,
mutational signatures, subclonal reconstructions, transcript abundance, splice calls and
other core data generated by the ICGC/TCGA Pan-cancer Analysis of Whole Genomes
Consortium is described here11 and available for download at https://dcc.icgc.org/
releases/PCAWG [dcc.icgc.org]. Additional information on accessing the data, including
raw read files, can be found at https://docs.icgc.org/pcawg/data/ [docs.icgc.org]. In
accordance with the data access policies of the ICGC and TCGA projects, most
molecular, clinical and specimen data are in an open tier which does not require access
approval. To access potentially identification information, such as germline alleles and
underlying sequencing data, researchers will need to apply to the TCGA Data Access
Committee (DAC) via dbGaP (https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login
[dbgap.ncbi.nlm.nih.gov]) for access to the TCGA portion of the dataset, and to the
ICGC Data Access Compliance Office (DACO; http://icgc.org/daco [icgc.org]) for the
ICGC portion. In addition, to access somatic single nucleotide variants derived from
TCGA donors, researchers will also need to obtain dbGaP authorization. The consensus
SV calls are available from synapse (https://www.synapse.org/#!Synapse:syn7596712).
Copy number data are available from synapse (https://www.synapse.org/#!Synapse:
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syn2364727). The gene expression dataset is available from synapse (https://www.
synapse.org/#!Synapse:syn5553991).

Code availability
R source code written for this study is provided as part of Supplementary Data 7. The
core computational pipelines used by the PCAWG Consortium for alignment, quality
control and variant calling are available to the public at https://dockstore.org/search?
search=pcawg [dockstore.org] under the GNU General Public License v3.0, which allows
for reuse and distribution.
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