90 research outputs found

    Modélisation géométrique 3D des granites stéphaniens du massif du Pelvoux (Alpes, France).

    Get PDF
    International audienceLa modélisation 3D de la géométrie des granites Stéphaniens du Massif du Pelvoux a permis de mettre en évidence le contexte cisaillant associé à leur mise en place. Dans les Massifs Cristallins Externes Français, ces cisaillements se répartissent selon deux directions, N50 et N135, respectivement dextre et sénestre. Ce système décrochant Carbonifère s'intègre dans un contexte d'extension N-S connu dans l'ensemble de la chaîne Varisque

    PCA of Fe-oxides MLA data as an advanced tool in provenance discrimination and indicator mineral exploration : case study from bedrock and till from the Kiggavik U deposits area (Nunavut, Canada)

    Get PDF
    Magnetite and hematite grains from the 0.25–0.5 mm and 0.5–2.0 mm ferromagnetic fractions of ten till samples collected up-ice, overlying and down-ice of the Kiggavik U deposits (Nunavut, Canada), as well as eight bedrock samples from Kiggavik igneous and metasedimentary basement and overlying sedimentary rocks were characterized for their grain size and mineral association using optical microscopy, scanning electron microscopy (SEM) and mineral liberation analysis (MLA). Principal component analysis (PCA) was used to evaluate the MLA data for Fe-oxide mineral association and grain size distribution. PCA shows that mineralogical and granulometric differences in Fe-oxides from Kiggavik igneous rocks distinguish them from that of Kiggavik metasedimentary and sedimentary rocks. In addition, The PCA results indicate that the composition and abundance of minerals associated/intergrown with Fe-oxides are not only different in various till samples, but also in different size fractions of the same sample. Higher proportions of hornblende, quartz, gahnite, grunerite, apatite, chromite and sulfides are intergrown with Fe-oxides in the 0.5–2.0 mm till fraction, as compared to the 0.25–0.5 mm fraction in which Fe-oxides are mostly associated with pyroxene, titanite, rutile, feldspars, calcite and zircon. The mineral associations and grain sizes of proximal bedrocks are reflected in smaller size fractions of Kiggavik till, whereas detrital grains in the 0.5–2.0 mm fraction of Kiggavik till may have originated from distal sources. PCA also shows that Fe-oxides from the Kiggavik bedrock and till can be discriminated from those of volcanogenic massive sulfide (VMS) deposits because of smaller grain sizes and higher abundances of sulfides, gahnite, axinite, corundum, hypersthene and pyroxene intergrown with VMS Fe-oxides. This study emphasizes the importance of selecting suitable representative grain size fractions of till, or other sediments, when using indicator minerals for exploration. The results of PCA of Fe-oxides MLA data are consistent with the results of using Fe-oxides geochemical data in provenance discrimination of Kiggavik till

    Geochemical and mineralogical signature of fault zones in Archean basement rocks: characterizing a multi-episodic history of fluid-rock interactions

    Get PDF
    East of the Paleoproterozoic Thelon basin (Nunavut, Canada), unconformity-related uranium deposits of the Kiggavik area, explored by AREVA, are hosted within Archean basement rocks (mainly gneisses and various magmatic intrusives). The study focuses on the Contact prospect, located along the NE-trending Andrew Lake fault and hosted within Archean granitic gneiss. There, the fracture network evolved in a brittle style from ca. 1830 Ma to ca. 1300 Ma for the main fracturing events. The successive fracturing events were associated with circulation of various fluids that interacted with host rocks and fault rocks and caused alteration of the protolith while precipitating new minerals, thus changing the elemental signature of the rock and giving each event a characteristic geochemical signature. AREVA possesses a vast dataset of systematic geochemical analyses (1519 samples in the dataset of the Contact prospect) which, along with newly conducted mineral characterization (microscopy, SEM, microprobe) and fluid inclusions study (microthermometry, Raman spectroscopy, LA-ICP MS) allowed characterizing the geochemical signature of selected fault zones, hence of the fluids that traveled through them at the time of each fracturing event. Four major fracturing events were geochemically characterized: one occurring at ca. 1750 Ma before the emplacement of the Paleoproterozoic Thelon basin infill (1667-1540 Ma), and three occurring after (between 1540 and 1267 Ma). The first main fracturing event is characterized by circulation of Si-rich fluids likely of igneous origin that silicified the Andrew Lake fault system. Vapor-only fluid inclusions displaying low-salinity and high entrapment temperature are representative of the mosaic quartz breccia that sealed fault zones during this event. The fracturing events and associated fluid circulations occurring after this silicifying event were compartmentalized by a large quartz breccia zone. Fault zones of the second fracturing event are relatively narrow ( to 50m) with moderate enrichment in the same elements, except for Fe, Mo, V and Se; they also display a higher content in non-mobile elements (Al and Ti) as a result of the loss of mobile elements during argillization. The fluids that circulated during these two fracturing events were oxidizing, sodic-calcic basinal brines of low temperatures (∼200 ◦C), enriched in uranium. The fourth fracturing event is characterized by fault zones that drove reduced, likely acidic and hot fluids (∼300 ◦C), that caused complete destabilization of iron oxides and also illitization of the host rock. This kind of analysis sheds light on the complexity of the fluid circulation events that may have occurred in impermeable basement rocks, and provides a powerful tool to decipher fluid-fault interactions and to potentially distinguish successive fault zones in cores by their geochemical signature

    The contact uranium prospect, Kiggavik project, Nunavut (CVanada): Tectonic history, structural constrains and timing of mineralization

    Get PDF
    Uranium mineralization in the Kiggavik area, on the eastern border of the Thelon basin (Nunavut, Canada), hosts significant uranium resources within the basement and its understanding is critical to comprehending the genesis of unconformity-related deposits' structural controls and therefore exploration of these types of deposits in this prospective district. This article deciphers the complex multiphase fracture network associated with uranium mineralization of the most recently discovered, basement-hosted prospect in the Kiggavik area, named Contact. The Contact prospect is located along the Andrew Lake Fault (ALF), a major NE-SW fault corridor in the area. This study combines field work, drillcore logging, sampling, and macro- to micro- petro-structural analyses. Key results from this study highlight that the NE-trending ALF, along with the ENE-trending Thelon (TF) and Judge Sissons (JSF) faults, formed early during intracratonic rifting and deposition of the Baker Lake and Wharton groups (ca. 1850-1750 Ma) in response to the Thelon and Trans-Hudsonian orogeny. The ALF was affected by a strong silicification-brecciation event that likely developed at ca. 1750 Ma, and partitioned later deformation and fluid circulation. In the Contact prospect, the ALF was reactivated multiple times and mineralized in three stages with distinctive secondary fracture patterns, alteration, and mineralization types. Ten fracture stages have been identified at the Contact prospect, f1-f10. The first stage of mineralization, coeval with f5, is related to fluids of unconstrained origin that circulated through E-W faults in the area that locally re-activated quartz veins of the brecciation event at the intersection with the ALF. Mineralization at this stage is polymetallic and associated with weak clay alteration. The second stage of uranium mineralization occurred coeval with transtensional reactivation of the NE-SW trending ALF (f6c) and in relation to circulation of oxidizing basinal brines within the fault zone. Mineralization at this stage is monometallic and associated with illite and sudoite alteration. Later reactivation of the inherited fracture network (f8) led to strong illitization and bleaching of the host rock, with local reworking of the ore body. Finally, reactivation of the fracture network during f9 and 10 lead to circulation of meteoric fluids that remobilized mineralization in a third stage of uranium re-concentration along redox fronts, with strong illitization and bleaching of the host rock. Unlike the classic unconformity-related uranium deposits in the Athabasca Basin where clay alteration halos occur around the ore bodies related to mineralizing processes, in the Contact prospect the strongest clay alteration event (f8) postdates both main stages of mineralization. Along with uranium remobilization, the basement-hosted Contact prospect is likely a relict of what was once a larger deposit

    Deciphering the complex evolution of a polyphase fault/fracture network and its control on fluid circulation and ore deposition through macro- to micro-scale observations

    Get PDF
    In the Kiggavik area (Nunavut, Canada), uranium mineralization is hosted in outcropping metamorphosed Archean to Paleoproterozoic basement rocks that were likely covered by the nearby Paleoproterozoic sandstones of the Thelon basin infill (1667-1540 Ma). The uranium mineralization is controlled by faults and fractures which developed during a long-lasting polyphase brittle tectonic history spanning from ca. 1850 Ma (after the Thelon and Trans-Hudsonian orogenies) to ca. 1270 Ma (before emplacement of MacKenzie dikes) for the main fracturing events

    Fault Zone Evolution and Development of a Structural and Hydrological Barrier: The Quartz Breccia in the Kiggavik Area (Nunavut, Canada) and Its Control on Uranium Mineralization

    Get PDF
    In the Kiggavik area (Nunavut, Canada), major fault zones along, or close to, where uranium deposits are found are often associated with occurrence of thick quartz breccia (QB) bodies. These bodies formed in an early stage (~1750 Ma) of the long-lasting tectonic history of the Archean basement, and of the Proterozoic Thelon basin. The main characteristics of the QB are addressed in this study; through field work, macro and microscopic observations, cathodoluminescence microscopy, trace elements, and oxygen isotopic signatures of the quartz forming the QB. Faults formed earlier during syn- to post-orogenic rifting (1850-1750 Ma) were subsequently reactivated, and underwent cycles of cataclasis, pervasive silicification, hydraulic brecciation, and quartz recrystallization. This was synchronous with the circulation of meteoric fluids mixing with Si-rich magmatic-derived fluids at depth, and were coeval with the emplacement of the Kivalliq igneous suite at 1750 Ma. These processes led to the emplacement of up to 30 m thick QB, which behaved as a mechanically strong, transverse hydraulic barrier that localized later fracturing, and compartmentalized/channelized vertical flow of uranium-bearing fluids after the deposition of the Thelon Basin (post 1750 Ma). The development and locations of QB control the location of uranium mineralization in the Kiggavik area

    Transpressional tectonics and Carboniferous magmatism in the Limousin, Massif Central, France: Structural and <sup>40</sup>Ar/<sup>39</sup>Ar investigations

    Get PDF
    New structural, microstructural, and 40Ar/39 Ar data from the NW Massif Central (France) provide additional constraints on the timing and tectonic setting of late Variscan granite magmatism. Previous studies had emphasized the role of late orogenic extension in the emplacement of granite plutons in the Limousin region. In contrast, the new data set is consistent with syntectonic emplacement of magma in a dextral simple shear active from 350 to 300 Ma in a transpressional regime. As an alternative hypothesis to late orogenic extension, we propose that magmas migrated into tensional bridges between active P shears associated with a lithospheric shear zone comparable to a pop-up structure. The Galician region, in the western end of the Ibero-Armorican tectonic arc, exhibits major left-lateral ductile shear zones which can be interpreted as conjugate structures to the Limousin and Armorican shear zones. Copyright 2007 by the American Geophysical Union

    Assessing changes in global fire regimes

    Get PDF
    PAGES, Past Global Changes, is funded by the Swiss Academy of Sciences and the Chinese Academy of Sciences and supported in kind by the University of Bern, Switzerland. Financial support was provided by the U.S. National Science Foundation award numbers 1916565, EAR-2011439, and EAR-2012123. Additional support was provided by the Utah Department of Natural Resources Watershed Restoration Initiative. SSS was supported by Brigham Young University Graduate Studies. MS was supported by National Science Centre, Poland (grant no. 2018/31/B/ST10/02498 and 2021/41/B/ST10/00060). JCA was supported by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 101026211. PF contributed within the framework of the FCT-funded project no. UIDB/04033/2020. SGAF acknowledges support from Trond Mohn Stiftelse (TMS) and University of Bergen for the startup grant ‘TMS2022STG03’. JMP participation in this research was supported by the Forest Research Centre, a research unit funded by Fundação para a Ciência e a Tecnologia I.P. (FCT), Portugal (UIDB/00239/2020). A.-LD acknowledge PAGES, PICS CNRS 06484 project, CNRS-INSU, Région Nouvelle-Aquitaine, University of Bordeaux DRI and INQUA for workshop support.Background The global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300. Results Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios. Conclusion The influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.Peer reviewe

    ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration

    Get PDF
    • …
    corecore