45 research outputs found

    Does relatedness matter? Phylogenetic density-dependent survival of seedlings in a tropical forest

    Get PDF
    A complex set of interactions among neighbors influences plant performance and community structure. Understanding their joint operation requires extensive information on species characteristics and individual performance. We evaluated first-year survival of 35 719 tropical forest seedlings of 222 species and 15 annual cohorts relative to the density of conspecific and heterospecific neighbors and the phylogenetic similarity of heterospecific neighbors. Neighbors were from two size classes, and size asymmetric interactions provided insight into likely mechanisms. Large heterospecific and conspecific neighbors reduced seedling survival equally, suggesting resource competition rather than host-specific enemies as a mechanism. In contrast, much stronger negative conspecific effects were associated with seedling neighbors capable of limited resource uptake, suggesting shared pests rather than competition as the mechanism. Survival improved, however, near phylogenetically similar heterospecific neighbors, suggesting habitat associations shared among closely related species affect spatial patterns of performance. Improved performance near phylogenetically similar neighbors is an emerging pattern in the handful of similar studies

    Successional dynamics in Neotropical forests are as uncertain as they are predictable

    Get PDF
    Although forest succession has traditionally been approached as a deterministic process, successional trajectories of vegetation change vary widely, even among nearby stands with similar environmental conditions and disturbance histories. Here, we provide the first attempt, to our knowledge, to quantify predictability and uncertainty during succession based on the most extensive long-term datasets ever assembled for Neotropical forests. We develop a novel approach that integrates deterministic and stochastic components into different candidate models describing the dynamical interactions among three widely used and interrelated forest attributes - stem density, basal area, and species density. Within each of the seven study sites, successional trajectories were highly idiosyncratic, even when controlling for prior land use, environment, and initial conditions in these attributes. Plot factors were far more important than stand age in explaining successional trajectories. For each site, the best-fit model was able to capture the complete set of time series in certain attributes only when both the deterministic and stochastic components were set to similar magnitudes. Surprisingly, predictability of stem density, basal area, and species density did not show consistent trends across attributes, study sites, or land use history, and was independent of plot size and time series length. The model developed here represents the best approach, to date, for characterizing autogenic successional dynamics and demonstrates the low predictability of successional trajectories. These high levels of uncertainty suggest that the impacts of allogenic factors on rates of change during tropical forest succession are far more pervasive than previously thought, challenging the way ecologists view and investigate forest regeneration. © 2015, National Academy of Sciences. All rights reserved

    Environmental gradients and the evolution of successional habitat specialization: A test case with 14 Neotropical forest sites

    Get PDF
    https://www.scopus.com/inward/record.url?eid=2-s2.0-84939570316&partnerID=40&md5=fcadae8e6c274e8b7efca96099304a7cSuccessional gradients are ubiquitous in nature, yet few studies have systematically examined the evolutionary origins of taxa that specialize at different successional stages. Here we quantify successional habitat specialization in Neotropical forest trees and evaluate its evolutionary lability along a precipitation gradient. Theoretically, successional habitat specialization should be more evolutionarily conserved in wet forests than in dry forests due to more extreme microenvironmental differentiation between early and late-successional stages in wet forest. We applied a robust multinomial classification model to samples of primary and secondary forest trees from 14 Neotropical lowland forest sites spanning a precipitation gradient from 788 to 4000 mm annual rainfall, identifying species that are old-growth specialists and secondary forest specialists in each site. We constructed phylogenies for the classified taxa at each site and for the entire set of classified taxa and tested whether successional habitat specialization is phylogenetically conserved. We further investigated differences in the functional traits of species specializing in secondary vs. old-growth forest along the precipitation gradient, expecting different trait associations with secondary forest specialists in wet vs. dry forests since water availability is more limiting in dry forests and light availability more limiting in wet forests. Successional habitat specialization is non-randomly distributed in the angiosperm phylogeny, with a tendency towards phylogenetic conservatism overall and a trend towards stronger conservatism in wet forests than in dry forests. However, the specialists come from all the major branches of the angiosperm phylogeny, and very few functional traits showed any consistent relationships with successional habitat specialization in either wet or dry forests. Synthesis. The niche conservatism evident in the habitat specialization of Neotropical trees suggests a role for radiation into different successional habitats in the evolution of species-rich genera, though the diversity of functional traits that lead to success in different successional habitats complicates analyses at the community scale. Examining the distribution of particular lineages with respect to successional gradients may provide more insight into the role of successional habitat specialization in the evolution of species-rich taxa

    Biodiversity recovery of Neotropical secondary forests

    Get PDF
    Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes. Copyright © 2019 The Authors, some rights reserved

    Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest

    No full text
    Multiple niche‐based processes including conspecific negative density dependence (CNDD) determine plant regeneration and community structure. We ask how interspecific and intraspecific density‐dependent interactions relate to plant life histories and associated functional traits. Using hierarchical models, we analysed how such interactions affected first‐year survival of seedling recruits of 175 species in a tropical forest, and how species abundances and functional traits are related to interspecific variation in density‐dependent effects. Conspecific seedling neighbour effects prevailed over the effects of larger conspecific and all heterospecific neighbours. Tolerance of seedling CNDD enhanced recruit survival and subsequent abundance, all of which were greater among larger seeded, slow‐growing and well‐defended species. Niche differentiation along the growth–survival trade‐off and tolerance of seedling CNDD strongly correlated with regeneration success, with manifest consequences for community structure. The ability of larger seeded species to better tolerate CNDD suggests a novel mechanism for CNDD to contribute to seed‐size variation and promote species coexistence through a tolerance–fecundity trade‐off

    Correlation coefficients (CC) of all pairwise trait combinations (11 traits, resulting in 55 pairwise trait combinations per forest type, see Table 2) of dry forest species plotted against those of wet forest species.

    No full text
    <p>Correlation coefficients represent Spearman coefficients except when relating binary variables, then the Phi coefficient was used. The pairwise correlation coefficients of dry forest proved to be significantly correlated with those of the wet forest (Pearson product moment correlation [R], P < 0.001), indicating that trait spectra are consistent across the two different forest types.</p

    Eigenvector scores of functional traits on the two main principal components for dry forest and for wet forest.

    No full text
    <p>Values in parentheses indicate variance accounted for by each axis.</p><p><sup>§</sup>Variable was ln-transformed.</p><p>Eigenvector scores of functional traits on the two main principal components for dry forest and for wet forest.</p
    corecore