39 research outputs found

    Equine herpesvirus 4 infected domestic horses associated with Sintashta spoke-wheeled chariots around 4,000 years ago

    Get PDF
    Equine viral outbreaks have disrupted the socio-economic life of past human societies up until the late 19th century and continue to be of major concern to the horse industry today. With a seroprevalence of 60–80 per cent, equine herpesvirus 4 (EHV-4) is the most common horse pathogen on the planet. Yet, its evolutionary history remains understudied. Here, we screen the sequenced data of 264 archaeological horse remains to detect the presence of EHV-4. We recover the first ancient EHV-4 genome with 4.2× average depth-of-coverage from a specimen excavated in the Southeastern Urals and dated to the Early Bronze Age period, approximately 3,900 years ago. The recovery of an EHV-4 virus outside the upper respiratory tract not only points to an animal particularly infected but also highlights the importance of post-cranial bones in pathogen characterisation. Bayesian phylogenetic reconstruction provides a minimal time estimate for EHV-4 diversification to around 4,000 years ago, a time when modern domestic horses spread across the Central Asian steppes together with spoke-wheeled Sintashta chariots, or earlier. The analyses also considerably revise the diversification time of the two EHV-4 subclades from the 16th century based solely on modern data to nearly a thousand years ago. Our study paves the way for a robust reconstruction of the history of non-human pathogens and their impact on animal health

    The biocultural origins and dispersal of domestic chickens

    Get PDF
    SignificanceChickens are the world's most numerous domestic animal. In order to understand when, where, and how they first became associated with human societies, we critically assessed the domestic status of chicken remains described in >600 sites in 89 countries, and evaluated zoogeographic, morphological, osteometric, stratigraphic, contextual, iconographic, and textual data. Although previous studies have made claims for an early origin of chickens, our results suggest that unambiguous chickens were not present until ∼1650 to 1250 BCE in central Thailand. A correlation between early chickens and the first appearance of rice and millet cultivation suggests that the production and storage of these cereals may have acted as a magnet, thus initiating the chicken domestication process

    Redefining the timing and circumstances of the chicken's introduction to Europe and north-west Africa

    Get PDF
    Little is known about the early history of the chicken (Gallus gallus domesticus), including the timing and circumstances of its introduction into new cultural environments. To evaluate its spatio-temporal spread across Eurasia and north-west Africa, the authors radiocarbon dated 23 chicken bones from presumed early contexts. Three-quarters returned dates later than those suggested by stratigraphy, indicating the importance of direct dating. The results indicate that chickens did not arrive in Europe until the first millennium BC. Moreover, a consistent time-lag between the introduction of chickens and their consumption by humans suggests that these animals were initially regarded as exotica and only several centuries later recognised as a source of ‘food’

    Reconstructing Asian faunal introductions to eastern Africa from multi-proxy biomolecular and archaeological datasets

    Get PDF
    Human-mediated biological exchange has had global social and ecological impacts. In subS-aharan Africa, several domestic and commensal animals were introduced from Asia in the pre-modern period; however, the timing and nature of these introductions remain contentious. One model supports introduction to the eastern African coast after the mid-first millennium CE, while another posits introduction dating back to 3000 BCE. These distinct scenarios have implications for understanding the emergence of long-distance maritime connectivity, and the ecological and economic impacts of introduced species. Resolution of this longstanding debate requires new efforts, given the lack of well-dated fauna from high-precision excavations, and ambiguous osteomorphological identifications. We analysed faunal remains from 22 eastern African sites spanning a wide geographic and chronological range, and applied biomolecular techniques to confirm identifications of two Asian taxa: domestic chicken (Gallus gallus) and black rat (Rattus rattus). Our approach included ancient DNA (aDNA) analysis aided by BLAST-based bioinformatics, Zooarchaeology by Mass Spectrometry (ZooMS) collagen fingerprinting, and direct AMS (accelerator mass spectrometry) radiocarbon dating. Our results support a late, mid-first millennium CE introduction of these species. We discuss the implications of our findings for models of biological exchange, and emphasize the applicability of our approach to tropical areas with poor bone preservation

    Ancient chicken remains reveal the origins of virulence in Marek’s 2 disease virus

    Get PDF
    The dramatic growth in livestock populations since the 1950s has altered the epidemiological and evolutionary trajectory of their associated pathogens. For example, Marek’s disease virus (MDV), which causes lymphoid tumors in chickens, has experienced a marked increase in virulence over the last century. Today, MDV infections kill >90% of unvaccinated birds and controlling it costs >US$1bn annually. By sequencing MDV genomes derived from archeological chickens, we demonstrate that it has been circulating for at least 1000 years. We functionally tested the Meq oncogene, one of 49 viral genes positively selected in modern strains, demonstrating that ancient MDV was likely incapable of driving tumor formation. Our results demonstrate the power of ancient DNA approaches to trace the molecular basis of virulence in economically relevant pathogens

    Ancient pigs reveal a near-complete genomic turnover following their introduction to Europe

    Get PDF
    Archaeological evidence indicates that pig domestication had begun by ~10,500 y before the present (BP) in the Near East, and mitochondrial DNA (mtDNA) suggests that pigs arrived in Europe alongside farmers ~8,500 y BP. A few thousand years after the introduction of Near Eastern pigs into Europe, however, their characteristic mtDNA signature disappeared and was replaced by haplotypes associated with European wild boars. This turnover could be accounted for by substantial gene flow from local Euro-pean wild boars, although it is also possible that European wild boars were domesticated independently without any genetic con-tribution from the Near East. To test these hypotheses, we obtained mtDNA sequences from 2,099 modern and ancient pig samples and 63 nuclear ancient genomes from Near Eastern and European pigs. Our analyses revealed that European domestic pigs dating from 7,100 to 6,000 y BP possessed both Near Eastern and European nuclear ancestry, while later pigs possessed no more than 4% Near Eastern ancestry, indicating that gene flow from European wild boars resulted in a near-complete disappearance of Near East ancestry. In addition, we demonstrate that a variant at a locus encoding black coat color likely originated in the Near East and persisted in European pigs. Altogether, our results indicate that while pigs were not independently domesticated in Europe, the vast majority of human-mediated selection over the past 5,000 y focused on the genomic fraction derived from the European wild boars, and not on the fraction that was selected by early Neolithic farmers over the first 2,500 y of the domestication process

    Equine herpesvirus 4 infected domestic horses associated with Sintashta spoke-wheeled chariots around 4,000 years ago.

    No full text
    Equine viral outbreaks have disrupted the socio-economic life of past human societies up until the late 19th century and continue to be of major concern to the horse industry today. With a seroprevalence of 60-80 per cent, equine herpesvirus 4 (EHV-4) is the most common horse pathogen on the planet. Yet, its evolutionary history remains understudied. Here, we screen the sequenced data of 264 archaeological horse remains to detect the presence of EHV-4. We recover the first ancient EHV-4 genome with 4.2× average depth-of-coverage from a specimen excavated in the Southeastern Urals and dated to the Early Bronze Age period, approximately 3,900 years ago. The recovery of an EHV-4 virus outside the upper respiratory tract not only points to an animal particularly infected but also highlights the importance of post-cranial bones in pathogen characterisation. Bayesian phylogenetic reconstruction provides a minimal time estimate for EHV-4 diversification to around 4,000 years ago, a time when modern domestic horses spread across the Central Asian steppes together with spoke-wheeled Sintashta chariots, or earlier. The analyses also considerably revise the diversification time of the two EHV-4 subclades from the 16th century based solely on modern data to nearly a thousand years ago. Our study paves the way for a robust reconstruction of the history of non-human pathogens and their impact on animal health
    corecore