1,297 research outputs found
Passive scalar convection in 2D long-range delta-correlated velocity field: Exact results
The letter presents new field-theoretical approach to 2D passive scalar
problem. The Gaussian form of the distribution for the Lyapunov exponent is
derived and its parameters are found explicitly.Comment: 11 pages, RevTex 3.0, IFUM-94/455/January-F
Configuration mixing in Pb : band structure and electromagnetic properties
In the present paper, we carry out a detailed analysis of the presence and
mixing of various families of collective bands in Pb. Making use of the
interacting boson model, we construct a particular intermediate basis that can
be associated with the unperturbed bands used in more phenomenological studies.
We use the E2 decay to construct a set of collective bands and discuss in
detail the B(E2)-values. We also perform an analysis of these theoretical
results (Q, B(E2)) to deduce an intrinsic quadrupole moment and the associated
quadrupole deformation parameter, using an axially deformed rotor model.Comment: submitted to pr
Variability in cyanobacteria sensitivity to antibiotics and implications for environmental risk assessment
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record© 2019 Once released into the environment antibiotics can kill or inhibit the growth of bacteria, and in turn potentially have effects on bacterial community structure and ecosystem function. Environmental risk assessment (ERA) seeks to establish protection limits to minimise chemical impacts on the environment, but recent evidence suggests that the current regulatory approaches for ERA for antibiotics may not be adequate for protecting bacteria that have fundamental roles in ecosystem function. In this study we assess the differences in interspecies sensitivity of eight species of cyanobacteria to seven antibiotics (cefazolin, cefotaxime, ampicillin, sufamethazine, sulfadiazine, azithromycin and erythromycin) with three different modes of action. We found that variability in the sensitivity to these antibiotics between species was dependent on the mode of action and varied by up to 70 times for ÎČ-lactams. Probabilistic analysis using species sensitivity distributions suggest that the current predicted no effect concentration PNEC for the antibiotics may be either over or under protective of cyanobacteria dependent on the species on which it is based and the mode of action of the antibiotic; the PNECs derived for the macrolide antibiotics were over protective but PNECs for ÎČ-lactams were generally under protective. For some geographical locations we identify a significant risk to cyanobacteria populations based upon measured environmental concentrations of selected antibiotics. We conclude that protection limits, as determined according to current regulatory guidance, may not always be protective and might be better derived using SSDs and that including toxicity data for a wider range of (cyano-) bacteria would improve confidence for the ERA of antibiotics.AstraZeneca Global SHE Research ProGrammeMedical Research Council (MRC
The XMM large scale structure survey: optical vs. X-ray classifications of active galactic nuclei and the unified scheme
Our goal is to characterize AGN populations by comparing their X-ray and
optical classifications. We present a sample of 99 spectroscopically identified
X-ray point sources in the XMM-LSS survey which are significantly detected in
the [2-10] keV band, and with more than 80 counts. We performed an X-ray
spectral analysis for all of these 99 X-ray sources. Introducing the fourfold
point correlation coefficient, we find only a mild correlation between the
X-ray and the optical classifications, as up to 30% of the sources have
differing X-ray and optical classifications: on one hand, 10% of the type 1
sources present broad emission lines in their optical spectra and strong
absorption in the X-rays. These objects are highly luminous AGN lying at high
redshift and thus dilution effects are totally ruled out, their discrepant
nature being an intrinsic property. Their X-ray luminosities and redshifts
distributions are consistent with those of the unabsorbed X-ray sources with
broad emission lines. On the other hand, 25/32 are moderate luminosity AGN,
which are both unabsorbed in the X-rays and only present narrow emission lines
in their optical spectra. The majority of them have an optical spectrum which
is representative of the host galaxy. We finally infer that dilution of the AGN
by the host galaxy seems to account for their nature. 5/25 have been defined as
Seyfert 2. In conclusion, most of these 32 discrepant cases can be accounted
for by the standard AGN unified scheme, as its predictions are not met for only
12% of the 99 X-ray sources. ABRIDGEDComment: 25 pages, 19 figures, Accepted for publication in A&
Charge order, orbital order, and electron localization in the Magneli phase Ti4O7
The metal-insulator transition of the Magneli phase Ti4O7 is studied by means
of augmented spherical wave (ASW) electronic structure calculations as based on
density functional theory and the local density approximation. The results show
that the metal-insulator transition arises from a complex interplay of charge
order, orbital order, and singlet formation of those Ti 3d states which mediate
metal-metal bonding inside the four-atom chains characteristic of the material.
Ti4O7 thus combines important aspects of Fe3O4 and VO2. While the charge
ordering closely resembles that observed at the Verwey transition, the orbital
order and singlet formation appear to be identical to the mechanisms driving
the metal-insulator transition of vanadium dioxide.Comment: 11 pages, 4 figures, more information at
http://www.physik.uni-augsburg.de/~eyert
QCD string in light-light and heavy-light mesons
The spectra of light-light and heavy-light mesons are calculated within the
framework of the QCD string model, which is derived from QCD in the Wilson loop
approach. Special attention is payed to the proper string dynamics that allows
us to reproduce the straight-line Regge trajectories with the inverse slope
being 2\pi\sigma for light-light and twice as small for heavy-light mesons. We
use the model of the rotating QCD string with quarks at the ends to calculate
the masses of several light-light mesons lying on the lowest Regge trajectories
and compare them with the experimental data as well as with the predictions of
other models. The masses of several low-lying orbitally and radially excited
heavy--light states in the D, D_s, B, and B_s meson spectra are calculated in
the einbein (auxiliary) field approach, which has proven to be rather accurate
in various calculations for relativistic systems. The results for the spectra
are compared with the experimental and recent lattice data. It is demonstrated
that an account of the proper string dynamics encoded in the so-called string
correction to the interquark interaction leads to an extra negative
contribution to the masses of orbitally excited states that resolves the
problem of the identification of the D(2637) state recently claimed by the
DELPHI Collaboration. For the heavy-light system we extract the constants
\bar\Lambda, \lambda_1, and \lambda_2 used in Heavy Quark Effective Theory
(HQET) and find good agreement with the results of other approaches.Comment: RevTeX, 42 pages, 7 tables, 7 EPS figures, uses epsfig.sty, typos
corrected, to appear in Phys.Rev.
- âŠ