929 research outputs found
Lymphome T cutané et systémique traité avec succès par greffe haplo-identique
BACKGROUND: Herein, we report a case of systemic cutaneous T-cell lymphoma refractory to standard therapy, the course of which resulted in haplo-identical bone marrow grafting.
PATIENTS AND METHODS: A 53-year-old woman consulted for facial erythema with infiltration, keratotic lesions on the trunk, and adenopathies measuring around 1cm on the axilla and inguinal folds. A diagnosis was made of Sézary syndrome (SS), a leukaemic form of epidermotropic cutaneous T-cell lymphoma. After three years of treatment with methotrexate, the patient developed transformed SS with visceral involvement. Given the high risk of relapse and the absence of an HLA-compatible donor, haploidentical bone marrow grafting was performed. The patient was still in complete remission two and a half years later. The disease course was nevertheless marked by the emergence one year after grafting of a Blaschko-distributed lichenoid eruption having histological features consistent with chronic graft-versus-host disease (GVHD); treatment with topical betamethasone proved efficacious.
DISCUSSION: To our knowledge, this is the first reported case of haploidentical grafting for systemic and transformed cutaneous T-cell lymphoma. This approach could henceforth represent a therapeutic option for patients requiring an allograft in the absence of compatible donors. The Blaschko-distributed lichenoid lesions attributed to chronic GVHD could be the result of reduced immune tolerance to abnormal embryological clones leading to a T-lymphocyte-mediated inflammatory reaction
Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector
Originally designed as a new nuclear reactor monitoring device, the Nucifer
detector has successfully detected its first neutrinos. We provide the second
shortest baseline measurement of the reactor neutrino flux. The detection of
electron antineutrinos emitted in the decay chains of the fission products,
combined with reactor core simulations, provides an new tool to assess both the
thermal power and the fissile content of the whole nuclear core and could be
used by the Inter- national Agency for Atomic Energy (IAEA) to enhance the
Safeguards of civil nuclear reactors. Deployed at only 7.2m away from the
compact Osiris research reactor core (70MW) operating at the Saclay research
centre of the French Alternative Energies and Atomic Energy Commission (CEA),
the experiment also exhibits a well-suited configuration to search for a new
short baseline oscillation. We report the first results of the Nucifer
experiment, describing the performances of the 0.85m3 detector remotely
operating at a shallow depth equivalent to 12m of water and under intense
background radiation conditions. Based on 145 (106) days of data with reactor
ON (OFF), leading to the detection of an estimated 40760 electron
antineutrinos, the mean number of detected antineutrinos is 281 +- 7(stat) +-
18(syst) electron antineutrinos/day, in agreement with the prediction 277(23)
electron antineutrinos/day. Due the the large background no conclusive results
on the existence of light sterile neutrinos could be derived, however. As a
first societal application we quantify how antineutrinos could be used for the
Plutonium Management and Disposition Agreement.Comment: 22 pages, 16 figures - Version
Excited States of Proton-bound DNA/RNA Base Homo-dimers: Pyrimidines
We are presenting the electronic photo fragment spectra of the protonated
pyrimidine DNA bases homo-dimers. Only the thymine dimer exhibits a well
structured vibrational progression, while protonated monomer shows broad
vibrational bands. This shows that proton bonding can block some non radiative
processes present in the monomer.Comment: We acknowledge the use of the computing facility cluster GMPCS of the
LUMAT federation (FR LUMAT 2764
Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.
Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells
Galectin-1, a gene preferentially expressed at the tumor margin, promotes glioblastoma cell invasion
BACKGROUND: High-grade gliomas, including glioblastomas (GBMs), are recalcitrant to local therapy in part because of their ability to invade the normal brain parenchyma surrounding these tumors. Animal models capable of recapitulating glioblastoma invasion may help identify mediators of this aggressive phenotype. METHODS: Patient-derived glioblastoma lines have been propagated in our laboratories and orthotopically xenografted into the brains of immunocompromized mice. Invasive cells at the tumor periphery were isolated using laser capture microdissection. The mRNA expression profile of these cells was compared to expression at the tumor core, using normal mouse brain to control for host contamination. Galectin-1, a target identified by screening the resulting data, was stably over-expressed in the U87MG cell line. Sub-clones were assayed for attachment, proliferation, migration, invasion, and in vivo tumor phenotype. RESULTS: Expression microarray data identified galectin-1 as the most potent marker (p-value 4.0 x 10(-8)) to identify GBM cells between tumor-brain interface as compared to the tumor core. Over-expression of galectin-1 enhanced migration and invasion in vitro. In vivo, tumors expressing high galectin-1 levels showed enhanced invasion and decreased host survival. CONCLUSIONS: In conclusion, cells at the margin of glioblastoma, in comparison to tumor core cells, have enhanced expression of mediators of invasion. Galectin-1 is likely one such mediator. Previous studies, along with the current one, have proven galectin-1 to be important in the migration and invasion of glioblastoma cells, in GBM neoangiogenesis, and also, potentially, in GBM immune privilege. Targeting this molecule may offer clinical improvement to the current standard of glioblastoma therapy, i.e. radiation, temozolomide, anti-angiogenic therapy, and vaccinotherapy
Segmentation and kinematics of the North America-Caribbean plate boundary offshore Hispaniola
We explored the submarine portions of the Enriquillo–Plantain Garden Fault zone (EPGFZ) and the Septentrional–Oriente Fault zone (SOFZ) along the Northern Caribbean plate boundary using high-resolution multibeam echo-sounding and shallow seismic reflection. The bathymetric data shed light on poorly documented or previously unknown submarine fault zones running over 200 km between Haiti and Jamaica (EPGFZ) and 300 km between the Dominican Republic and Cuba (SOFZ). The primary plate-boundary structures are a series of strike-slip fault segments associated with pressure ridges, restraining bends, step overs and dogleg offsets indicating very active tectonics. Several distinct segments 50–100 km long cut across pre-existing structures inherited from former tectonic regimes or bypass recent morphologies formed under the current strike-slip regime. Along the most recent trace of the SOFZ, we measured a strike-slip offset of 16.5 km, which indicates steady activity for the past ~1.8 Ma if its current GPS-derived motion of 9.8 ± 2 mm a−1 has remained stable during the entire Quaternary.Depto. de Geodinámica, EstratigrafÃa y PaleontologÃaFac. de Ciencias GeológicasTRUEpu
News from Arabidopsis on the Meiotic Roles of Blap75/Rmi1 and Top3α
International audienc
The CYCLIN-A CYCA1;2/TAM Is Required for the Meiosis I to Meiosis II Transition and Cooperates with OSD1 for the Prophase to First Meiotic Division Transition
Meiosis halves the chromosome number because its two divisions follow a single round of DNA replication. This process involves two cell transitions, the transition from prophase to the first meiotic division (meiosis I) and the unique meiosis I to meiosis II transition. We show here that the A-type cyclin CYCA1;2/TAM plays a major role in both transitions in Arabidopsis. A series of tam mutants failed to enter meiosis II and thus produced diploid spores and functional diploid gametes. These diploid gametes had a recombined genotype produced through the single meiosis I division. In addition, by combining the tam-2 mutation with AtSpo11-1 and Atrec8, we obtained plants producing diploid gametes through a mitotic-like division that were genetically identical to their parents. Thus tam alleles displayed phenotypes very similar to that of the previously described osd1 mutant. Combining tam and osd1 mutations leads to a failure in the prophase to meiosis I transition during male meiosis and to the production of tetraploid spores and gametes. This suggests that TAM and OSD1 are involved in the control of both meiotic transitions
News from Arabidopsis on the Meiotic Roles of Blap75/Rmi1 and Top3α
International audienc
Meiosis-Specific Loading of the Centromere-Specific Histone CENH3 in Arabidopsis thaliana
Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior
- …