442 research outputs found

    Utilisation de la lévitation acoustique pour la concentration de pulpe de papier

    Get PDF
    Dans les usines de pâte et papier, des techniques mécaniques sont utilisées pour éliminer les suspensions solides accumulées et concentrer la pulpe de papier. Pour des raisons environnementales et dans le but d’optimiser la fabrication de papier, l’enjeu est aujourd’hui de développer une nouvelle méthode pour filtrer les solides ou fibres du flux d'eau. L'idée de départ porte ainsi sur l’utilisation de la lévitation acoustique qui permet la suspension de particules de matière dans un milieu en utilisant la pression de rayonnement d’une onde acoustique. La force acoustique de rayonnement provenant du champ ultrasonore couplée à la force de trainée permettent alors de faire migrer les solides et de les séparer du flux d'eau. L’objectif est ainsi, en s’appuyant sur les connaissances actuelles en lévitation acoustique, de déterminer les conditions opératoires optimales pour le déploiement d’un procédé industriel de concentration de pulpe par méthode ultrasonore. Ainsi, un état de l’art à partir de travaux existants est réalisé dans un premier temps. Des applications de lévitation acoustique dans différents milieux sont notamment étudiées. De plus, les caractéristiques des flux de pulpe sont mises en avant. Les transducteurs de puissance créant l’onde ultrasonore sont aussi analysés. Ensuite différentes expériences préliminaires pour un cas de pulpe stationnaire sont réalisées afin de valider l’utilisation de la lévitation acoustique pour la concentration de pulpe de papier. Différents paramètres et conditions sont ainsi identifiés. Un modèle numérique de lévitation acoustique en présence d’un flux de pulpe de papier est alors développé afin de réaliser une étude visant à optimiser les paramètres et conditions mis en avant expérimentalement. Ce modèle 2D axisymétrique se base sur des modèles existants de lévitation acoustique en milieu micro fluidique. A la suite de cette étude numérique un ensemble de paramètres permettant la concentration de la pulpe de papier est obtenu. Des estimations de performance sont aussi réalisées. Un prototype, conçu à partir d’un anneau de transducteurs agissant sur les particules en les concentrant au centre du flux de pulpe, est alors développé. Une série de tests à l’échelle industrielle est enfin réalisée pour expérimenter ce prototype

    Environmental Pollutants and Metabolic Disorders: The Multi-Exposure Scenario of Life

    Get PDF
    Obesity and diabetes have reached epidemic proportions the past few decades and continue to progress worldwide with no clear sign of decline of the epidemic. Obesity is of high concern because it is the main risk factor for a number of non-communicable diseases such as cardiovascular diseases and type 2 diabetes. Metabolic diseases constitute a major challenge as they are associated with an overall reduced quality of life and impose a heavy economic burden on countries. These are multifactorial diseases and it is now recognized that environmental exposure to man-made chemical pollutants is part of the equation. Yet, risk assessment procedures are based on a one-by-one chemical evaluation which does not meet the specificities of the multi-exposure scenario of life, e.g., a combined and long-term exposure to even the smallest amounts of chemicals. Indeed, it is assumed that environmental exposure to chemicals will be negligible based on the low potency of each chemical and that they do not interact. Within this mini-review, strong evidences are brought that exposure to low levels of multiple chemicals especially those shown to interfere with hormonal action, the so-called endocrine disrupting compounds do trigger metabolic disturbances in conditions in which no effect was expected if considering the concentration of each individual chemical in the mixture. This is known as the cocktail effect. It means that risk assessment procedures are not protective enough and thus that it should be revisited for the sake of Public Health

    Synthesis of titanium dioxide precursor by the hydrolysis of titanium oxychloride solution

    Full text link
    [EN] This communication focuses on the development of an approach to improve the synthesis of [Ti8O12(H2O)24]Cl8.HCl.7H2O crystals which is one of the precursor for titanium dioxide TiO2 particles. This study provides a significant improvement in crystallization kinetics with a production rate increased by a factor nineteen by intensifying heat and mass transfers compared to the process in a close vessel. This enhancement was made possible by the development of a new reactor to control the heat and mass transfers involved. In parallel with the experimental set-up, a numerical model representative of the transfer phenomena was initiated. The first numerical results are encouraging and present a good agreement with the measurements.The authors acknowledge financial support from the French Agence Nationale de la Recherche (ANR) under reference ANR-12-EMMA-0023 (Nano-OxTi project).Le Bideau, P.; Richard-Plouet, M.; Glouannec, P.; Magueresse, A.; Iya-Sou, D.; Brohan, L. (2018). Synthesis of titanium dioxide precursor by the hydrolysis of titanium oxychloride solution. En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 1333-1340. https://doi.org/10.4995/IDS2018.2018.75811333134

    Lettre ouverte à Lexis-Nexis : à propos de l’édito de M. Jean Hauser « Phéromones »

    Get PDF
    Ce texte est une réponse rédigé par plusieurs juristes en réaction à un édito publié dans la Semaine juridique et portant sur le harcèlement sexuel. Il analyse et dénonce les propos tenus dans cet édito comme étant porteurs de stéréotypes de genre et d'une banalisation des violences sexuelles.This text is an answer written by several jurists to react to an editorial about sexual harassment published by the French legal review Semaine juridique. It analyses and denounces this editorial witch conveys gender stereotypes and trivialise sexual violence

    Effect of germ cell depletion on levels of specific mRNA transcripts in mouse Sertoli cells and Leydig cells

    Get PDF
    It has been shown that testicular germ cell development is critically dependent upon somatic cell activity but, conversely, the extent to which germ cells normally regulate somatic cell function is less clear. This study was designed, therefore, to examine the effect of germ cell depletion on Sertoli cell and Leydig cell transcript levels. Mice were treated with busulphan to deplete the germ cell population and levels of mRNA transcripts encoding 26 Sertoli cell-specific proteins and 6 Leydig cell proteins were measured by real-time PCR up to 50 days after treatment. Spermatogonia were lost from the testis between 5 and 10 days after treatment, while spermatocytes were depleted after 10 days and spermatids after 20 days. By 30 days after treatment, most tubules were devoid of germ cells. Circulating FSH and intratesticular testosterone were not significantly affected by treatment. Of the 26 Sertoli cell markers tested, 13 showed no change in transcript levels after busulphan treatment, 2 showed decreased levels, 9 showed increased levels and 2 showed a biphasic response. In 60% of cases, changes in transcript levels occurred after the loss of the spermatids. Levels of mRNA transcripts encoding Leydig cell-specific products related to steroidogenesis were unaffected by treatment. Results indicate (1) that germ cells play a major and widespread role in the regulation of Sertoli cell activity, (2) most changes in transcript levels are associated with the loss of spermatids and (3) Leydig cell steroidogenesis is largely unaffected by germ cell ablation

    Mechanisms Involved in Nicotinic Acetylcholine Receptor-Induced Neurotransmitter Release from Sympathetic Nerve Terminals in the Mouse Vas Deferens

    Get PDF
    Prejunctional nicotinic acetylcholine receptors (nAChRs) amplify postganglionic sympathetic neurotransmission, and there are indications that intraterminal Ca2+ stores might be involved. However, the mechanisms by which nAChR activation stimulates neurotransmitter release at such junctions is unknown. Rapid local delivery (picospritzing) of the nAChR agonist epibatidine was combined with intracellular sharp microelectrode recording to monitor spontaneous and field-stimulation-evoked neurotransmitter release from sympathetic nerve terminals in the mouse isolated vas deferens. Locally applied epibatidine (1 µM) produced ‘epibatidine-induced depolarisations’ (EIDs) that were similar in shape to spontaneous excitatory junction potentials (SEJPs) and were abolished by nonselective nAChR antagonists and the purinergic desensitizing agonist α,β-methylene ATP. The amplitude distribution of EIDs was only slightly shifted towards lower amplitudes by the selective α7 nAChR antagonists α-bungarotoxin and methyllcaconitine, the voltage-gated Na+ channel blocker tetrodotoxin or by blocking voltage-gated Ca2+ channels with Cd2+. Lowering the extracellular Ca2+ concentration reduced the frequency of EIDs by 69%, but more surprisingly, the Ca2+-induced Ca2+ release blocker ryanodine greatly decreased the amplitude (by 41%) and the frequency of EIDs by 36%. Ryanodine had no effect on electrically-evoked neurotransmitter release, paired-pulse facilitation, SEJP frequency, SEJP amplitude or SEJP amplitude distribution. These results show that activation of non-α7 nAChRs on sympathetic postganglionic nerve terminals induces high-amplitude junctional potentials that are argued to represent multipacketed neurotransmitter release synchronized by intraterminal Ca2+-induced Ca2+ release, triggered by Ca2+ influx directly through the nAChR. This nAChR-induced neurotransmitter release can be targeted pharmacologically without affecting spontaneous or electrically-evoked neurotransmitter release

    Presynaptic Nicotinic α7 and Non-α7 Receptors Stimulate Endogenous GABA Release from Rat Hippocampal Synaptosomes through Two Mechanisms of Action

    Get PDF
    BACKGROUND: Although converging evidence has suggested that nicotinic acetylcholine receptors (nAChR) play a role in the modulation of GABA release in rat hippocampus, the specific involvement of different nAChR subtypes at presynaptic level is still a matter of debate. In the present work we investigated, using selective α7 and α4β2 nAChR agonists, the presence of different nAChR subtypes on hippocampal GABA nerve endings to assess to what extent and through which mechanisms they stimulate endogenous GABA release. METHODOLOGY/FINDINGS: All agonists elicited GABA overflow. Choline (Ch)-evoked GABA overflow was dependent to external Ca(2+), but unaltered in the presence of Cd(2+), tetrodotoxin (TTX), dihydro-β-erythroidine (DHβE) and 1-(4,4-Diphenyl-3-butenyl)-3-piperidinecarboxylic acid hydrochloride SKF 89976A. The effect of Ch was blocked by methyllycaconitine (MLA), α-bungarotoxin (α-BTX), dantrolene, thapsigargin and xestospongin C, suggesting that GABA release might be triggered by Ca(2+) entry into synaptosomes through the α7 nAChR channel with the involvement of calcium from intracellular stores. Additionally, 5-Iodo-A-85380 dihydrochloride (5IA85380) elicited GABA overflow, which was Ca(2+) dependent, blocked by Cd(2+), and significantly inhibited by TTX and DHβE, but unaffected by MLA, SKF 89976A, thapsigargin and xestospongin C and dantrolene. These findings confirm the involvement of α4β2 nAChR in 5IA85380-induced GABA release that seems to occur following membrane depolarization and opening calcium channels. CONCLUSIONS/SIGNIFICANCE: Rat hippocampal synaptosomes possess both α7 and α4β2 nAChR subtypes, which can modulate GABA release via two distinct mechanisms of action. The finding that GABA release evoked by the mixture of sub-maximal concentration of 5IA85380 plus sub-threshold concentrations of Ch was significantly larger than that elicited by the sum of the effects of the two agonists is compatible with the possibility that they coexist on the same nerve terminals. These findings would provide the basis for possible selective pharmacological strategies to treat neuronal disorders that involve the dysfunction of hippocampal cholinergic system

    Hyperexcitability of the local cortical circuit in mouse models of tuberous sclerosis complex

    Get PDF
    Tuberous sclerosis complex (TSC) is a neurogenetic disorder associated with epilepsy, intellectual disabilities, and autistic behaviors. These neurological symptoms result from synaptic dysregulations, which shift a balance between excitation and inhibition. To decipher the synaptic substrate of hyperexcitability, we examined pan-neuronal Tsc1 knockout mouse and found a reduction in surface expression of a GABA receptor (GABAR) subunit but not AMPA receptor (AMPAR) subunit. Using electrophysiological recordings, we found a significant reduction in the frequency of GABAR-mediated miniature inhibitory postsynaptic currents (GABAR-mIPSCs) but not AMPAR-mediated miniature excitatory postsynaptic currents (AMPAR-mEPSCs) in layer 2/3 pyramidal neurons. To determine a subpopulation of interneurons that are especially vulnerable to the absence of TSC1 function, we also analyzed two strains of conditional knockout mice targeting two of the prominent interneuron subtypes that express parvalbumin (PV) or somatostatin (SST). Unlike pan-neuronal knockout mice, both interneuron-specific Tsc-1 knockout mice did not develop spontaneous seizures and grew into adults. Further, the properties of AMPAR-mEPSCs and GABAR-mIPSCs were normal in both Pv-Cre and Sst-Cre x Tsc1fl/fl knockout mice. These results indicate that removal of TSC1 from all neurons in a local cortical circuit results in hyperexcitability while connections between pyramidal neurons and interneurons expressing PV and SST are preserved in the layer 2/3 visual cortex. Our study suggests that another inhibitory cell type or a combination of multiple subtypes may be accountable for hyperexcitability in TSC. Keywords: Tuberous sclerosis complex; E/I balance; AMPA receptor; GABA receptor; Autism; Epilepsy; mTOR pathwa

    Chronic Consumption of Farmed Salmon Containing Persistent Organic Pollutants Causes Insulin Resistance and Obesity in Mice

    Get PDF
    Background: Dietary interventions are critical in the prevention of metabolic diseases. Yet, the effects of fatty fish consumption on type 2 diabetes remain unclear. The aim of this study was to investigate whether a diet containing farmed salmon prevents or contributes to insulin resistance in mice. Methodology/Principal Findings: Adult male C57BL/6J mice were fed control diet (C), a very high-fat diet without or with farmed Atlantic salmon fillet (VHF and VHF/S, respectively), and Western diet without or with farmed Atlantic salmon fillet (WD and WD/S, respectively). Other mice were fed VHF containing farmed salmon fillet with reduced concentrations of persistent organic pollutants (VHF/S-POPs). We assessed body weight gain, fat mass, insulin sensitivity, glucose tolerance, ex vivo muscle glucose uptake, performed histology and immunohistochemistry analysis, and investigated gene and protein expression. In comparison with animals fed VHF and WD, consumption of both VHF/S and WD/S exaggerated insulin resistance, visceral obesity, and glucose intolerance. In addition, the ability of insulin to stimulate Akt phosphorylation and muscle glucose uptake was impaired in mice fed farmed salmon. Relative to VHF/S-fed mice, animals fed VHF/S-POPs had less body burdens of POPs, accumulated less visceral fat, and had reduced mRNA levels of TNFa as well as macrophage infiltration in adipose tissue. VHF/S-POPs-fed mice further exhibited better insulin sensitivity and glucose tolerance than mice fed VHF/S. Conclusions/Significance: Our data indicate that intake of farmed salmon fillet contributes to several metabolic disorders linked to type 2 diabetes and obesity, and suggest a role of POPs in these deleterious effects. Overall, these findings may participate to improve nutritional strategies for the prevention and therapy of insulin resistance
    corecore