1,843 research outputs found

    Spacecraft attitude determination by fanscan technique

    Get PDF
    To determine orientation, or attitude, of spacecraft in flight relative to data-receiving antenna on earth use fanbeam antenna which is offset in angle from spin axis of spacecraft and provides fan-like radiation pattern

    Introducing Novice Operators to Collaborative Robots: A Hands-On Approach for Learning and Training

    Get PDF
    Collaborative robots (cobots) have seen widespread adoption in industrial applications over the last decade. Cobots can be placed outside protective cages and are generally regarded as much more intuitive and easy to program compared to larger classical industrial robots. However, despite the cobots' widespread adoption, their collaborative potential and opportunity to aid flexible production processes seem hindered by a lack of training and understanding from shop floor workers. Researchers have focused on technical solutions, which allow novice robot users to more easily train collaborative robots. However, most of this work has yet to leave research labs. Therefore, training methods are needed with the goal of transferring skills and knowledge to shop floor workers about how to program collaborative robots. We identify general basic knowledge and skills that a novice must master to program a collaborative robot. We present how to structure and facilitate cobot training based on cognitive apprenticeship and test the training framework on a total of 20 participants using a UR10e and UR3e robot. We considered two conditions: adaptive and self-regulated training. We found that the facilitation was effective in transferring knowledge and skills to novices, however, found no conclusive difference between the adaptive or self-regulated approach. The results demonstrate that, thanks to the proposed training method, both groups are able to significantly reduce task time, achieving a reduction of 40%, while maintaining the same level of performance in terms of position error. Note to Practitioners-This paper was motivated by the fact that the adoption of smaller, so-called collaborative robots is increasing within manufacturing but the potential for a single robot to be used flexibly in multiple places of a production seems unfulfilled. If more unskilled workers understood the collaborative robots and received structured training, they would be capable of programming the robots independently. This could change the current landscape of stationary collaborative robots towards more flexible robot use and thereby increase companies' internal overall equipment efficiency and competencies. To this end, we identify general skills and knowledge for programming a collaborative robot, which helps increase the transparency of what novices need to know. We show how such knowledge and skills may be facilitated in a structured training framework, which effectively transfers necessary programming knowledge and skills to novices. This framework may be applied to a wider scope of knowledge and skills as the learner progresses. The skills and knowledge that we identify are general across robot platforms, however, collaborative robot interfaces differ. Therefore, a practical limitation to the approach includes the need for a knowledgeable person on the specific collaborative robot in question in order to create training material in areas specific to that model. However, with our list of identified skills, it provides an easier starting point. We show that relatively few skills and knowledge areas can enhance a novice's programming capability

    Coherent Transport through an interacting double quantum dot: Beyond sequential tunneling

    Full text link
    Various causes for negative differential conductance in transport through an interacting double quantum dot are investigated. Particular focus is given to the interplay between the renormalization of the energy levels due to the coupling to the leads and the decoherence of the states. The calculations are performed within a basis of many-particle eigenstates and we consider the dynamics given by the von Neumann-equation taking into account also processes beyond sequential tunneling. A systematic comparison between the levels of approximation and also with different formalisms is performed. It is found that the current is qualitatively well described by sequential processes as long as the temperature is larger than the level broadening induced by the contacts.Comment: 11 pages, 5 figures included in tex

    Generation of Squeezing in Higher Order Hermite-Gaussian Modes with an Optical Parametric Amplifier

    Get PDF
    We demonstrate quantum correlations in the transverse plane of continuous wave light beams by producing -4.0 dB, -2.6 dB and -1.5 dB of squeezing in the TEM00, TEM10 and TEM20 Hermite- Gauss modes with an optical parametric amplifier, respectively. This has potential applications in quantum information networking, enabling parallel quantum information processing. We describe the setup for the generation of squeezing and analyze the effects of various experimental issues such as mode overlap between pump and seed and nonlinear losses.Comment: 7 pages, 4 figure

    Functional recovery is considered the most important target: a survey of dedicated professionals

    Get PDF
    Background: The aim of this study was to survey the relative importance of postoperative recovery targets and perioperative care items, as perceived by a large group of international dedicated professionals. Methods: A questionnaire with eight postoperative recovery targets and 13 perioperative care items was mailed to participants of the first international Enhanced Recovery After Surgery (ERAS) congress and to authors of papers with a clear relevance to ERAS in abdominal surgery. The responders were divided into categories according to profession and region. Results: The recovery targets ‘To be completely free of nausea’, ‘To be independently mobile’ and ‘To be able to eat and drink as soon as possible’ received the highest score irrespective of the responder's profession or region of origin. Equally, the care items ‘Optimizing fluid balance’, ‘Preoperative counselling’ and ‘Promoting early and scheduled mobilisation’ received the highest score across all groups. Conclusions: Functional recovery, as in tolerance of food without nausea and regained mobility, was considered the most important target of recovery. There was a consistent uniformity in the way international dedicated professionals scored the relative importance of recovery targets and care items. The relative rating of the perioperative care items was not dependent on the strength of evidence supporting the items

    Experimental Demonstration of Squeezed State Quantum Averaging

    Get PDF
    We propose and experimentally demonstrate a universal quantum averaging process implementing the harmonic mean of quadrature variances. The harmonic mean protocol can be used to efficiently stabilize a set of fragile squeezed light sources with statistically fluctuating noise levels. The averaged variances are prepared probabilistically by means of linear optical interference and measurement induced conditioning. We verify that the implemented harmonic mean outperforms the standard arithmetic mean strategy. The effect of quantum averaging is experimentally tested both for uncorrelated and partially correlated noise sources with sub-Poissonian shot noise or super-Poissonian shot noise characteristics.Comment: 4 pages, 5 figure

    Breakdown of the Isobaric Multiplet Mass Equation for the A = 20 and 21 Multiplets

    Full text link
    Using the Penning trap mass spectrometer TITAN, we performed the first direct mass measurements of 20,21Mg, isotopes that are the most proton-rich members of the A = 20 and A = 21 isospin multiplets. These measurements were possible through the use of a unique ion-guide laser ion source, a development that suppressed isobaric contamination by six orders of magnitude. Compared to the latest atomic mass evaluation, we find that the mass of 21Mg is in good agreement but that the mass of 20Mg deviates by 3{\sigma}. These measurements reduce the uncertainties in the masses of 20,21Mg by 15 and 22 times, respectively, resulting in a significant departure from the expected behavior of the isobaric multiplet mass equation in both the A = 20 and A = 21 multiplets. This presents a challenge to shell model calculations using either the isospin non-conserving USDA/B Hamiltonians or isospin non-conserving interactions based on chiral two- and three-nucleon forces.Comment: 5 pages, 2 figure

    Precision mass measurements of magnesium isotopes and implications on the validity of the Isobaric Mass Multiplet Equation

    Full text link
    If the mass excess of neutron-deficient nuclei and their neutron-rich mirror partners are both known, it can be shown that deviations of the Isobaric Mass Multiplet Equation (IMME) in the form of a cubic term can be probed. Such a cubic term was probed by using the atomic mass of neutron-rich magnesium isotopes measured using the TITAN Penning trap and the recently measured proton-separation energies of 29^{29}Cl and 30^{30}Ar. The atomic mass of 27^{27}Mg was found to be within 1.6σ\sigma of the value stated in the Atomic Mass Evaluation. The atomic masses of 28,29^{28,29}Mg were measured to be both within 1σ\sigma, while being 8 and 34 times more precise, respectively. Using the 29^{29}Mg mass excess and previous measurements of 29^{29}Cl we uncovered a cubic coefficient of dd = 28(7) keV, which is the largest known cubic coefficient of the IMME. This departure, however, could also be caused by experimental data with unknown systematic errors. Hence there is a need to confirm the mass excess of 28^{28}S and the one-neutron separation energy of 29^{29}Cl, which have both come from a single measurement. Finally, our results were compared to ab initio calculations from the valence-space in-medium similarity renormalization group, resulting in a good agreement.Comment: 7 pages, 3 figure
    corecore