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We propose and experimentally demonstrate a universal quantum averaging process implementing the harmonic
mean of quadrature variances. The averaged variances are prepared probabilistically by means of linear optical
interference and measurement-induced conditioning. We verify that the implemented harmonic mean yields
a lower value than the corresponding value obtained for the standard arithmetic-mean strategy. The effect of
quantum averaging is experimentally tested for squeezed and thermal states as well as for uncorrelated and
partially correlated noise sources. The harmonic-mean protocol can be used to efficiently stabilize a set of
squeezed-light sources with statistically fluctuating noise levels.
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The mean of a set of statistically varying, real and non-
negative numbers, x = {x1,x2, . . . ,xn}, is, in general [1],

M(x) =
(

1

n

n∑
i=1

xr
i

)1/r

, (1)

where r is an integer. The most commonly used means are
the arithmetic mean and the harmonic mean corresponding to
r = 1 and r = −1, respectively [2]. These two kinds of means
occur in several physical problems, and the actual mean being
used to describe the physical system depends on the physical
setup. For example, the total resistance, R, of an electrical
circuit consisting of n serially or parallelly connected resistors
(with resistances Ri) is known to follow the arithmetic, R =∑n

i=1 Ri , and harmonic, 1
R

= ∑n
i=1

1
Ri

, means, respectively
(apart from a multiplicative constant). Similar mean laws can
also be deduced for the total stiffness of a system comprising
springs connected in series or in parallel. Likewise, one finds
examples of the arithmetic mean and the harmonic mean in
geometrical optics as well as in astronomy [3,4].

All these examples of the arithmetic and harmonic means
are based on classical systems. In this Rapid Communication,
we explore an example of the arithmetic and the harmonic
mean in a quantum optical system. More specifically, we
propose and experimentally demonstrate the arithmetic and
harmonic means of the quadrature variances of different
quantum states using an optical system that is based on simple
linear optics and homodyne detection. We average an ample
supply of quantum states that exhibit either sub-Poissonian
shot-noise behavior or super-Poissonian shot-noise behavior,
and we investigate the averaging procedure for completely in-
dependent as well as partially noise correlated quantum states.
Such averaging protocols allow us to stabilize the degree of
squeezing (variances) of n independent, fragile, and possibly
unstable squeezed-state resources. Therefore, besides being of
fundamental interest, such a protocol will find applications
in quantum information and quantum metrology where stable
resources of squeezed light are required [5,6]. We find that
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in terms of stabilizing the squeezed-state variance from a
fluctuating set of different noisy squeezed-light resources, the
harmonic mean outperforms the standard arithmetic mean.

Consider n independent quantum resources described by
the quadrature variances Vi = 〈x2

i 〉 − 〈xi〉2, where xi (i =
1,2, . . . ,n) are the amplitude quadratures. The goal is to
construct the arithmetic and harmonic means of the variances
without using any additional squeezed-state resources. The
arithmetic mean can be formed in two different ways as
illustrated in Fig. 1: (a) by randomly selecting one of the
n states from the resources or (b) by interfering the n states
on the (n − 1) beam splitter [7] and subsequently rejecting all
outputs except one. Any one of these approaches yields the
arithmetic mean for the total variance:

VA = 1

n

n∑
i=1

Vi, (2)

Note that such a strategy is similar to the demonstration of
universal quantum purification of continuous variable (CV)
quantum information based on an ensemble of identical
states [8].

The harmonic mean of the variances can be formed by
using the setup shown in Fig. 1(c). Here the n states interfere
on the (n − 1) beam splitter, the amplitude quadratures of
the n − 1 outputs are measured, and the results are used to
drive the state. The state can be driven in two different ways:
If the amplitude quadrature variances of the input states are
known, the protocol is deterministic and the state is linearly
displaced with an amount determined by the a priori variance
information as well as the measurement outcomes. However, in
a more relevant scenario where the variances are unknown, the
state is probabilistically heralded based on the measurement
outcomes: If the quadrature outcomes are arbitrarily close to
zero, the remaining state is kept; otherwise it is discarded.
Importantly, the latter protocol is universal as it is independent
on the input state. Either method yields the harmonic mean for
the variances:

1

VH

= 1

n

n∑
i=1

1

Vi

. (3)
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FIG. 1. (Color online) Schematic illustrations of two arithmetic-
mean protocols and the harmonic-mean protocol (see text for details).
SP, signal processing; BS, beam splitters; SQZ, squeezing source.
Experimentally we explore setup (b) and and setup (c).

This result can easily be deduced by operating in the quadrature
basis. Let us consider the situation of two Gaussian input states
with the wave functions |φz〉 ∝ ∫

exp(−z2/4Vz)|z〉dz, where
z = x and z = y are two different amplitude quadratures.
They merge in quadrature on a balanced beam splitter and
produce the following output state:

∫
exp(−x2/4Vx)|(x − y)/√

2〉1dx ⊗ ∫
exp(−y2/4Vy)|(x + y)/

√
2〉2dy, where the in-

dices 1 and 2 correspond to the two output modes. One of
the modes is then measured with a homodyne detector (set to
measure the amplitude quadrature) and outcomes arbitrarily
close to zero are selected. This is ideally simulated by a
projection onto the quadrature eigenstate |xm = 0〉1. This
projection (using δ(x − y) = 〈xm = 0|(x − y)/

√
2〉) yields

the state |φout〉 ∝ ∫
exp(−x2( 1

4Vx
+ 1

4Vy
))|√2x〉2dx. This state

has exactly the harmonic variance 1/VH = (1/Vx + 1/Vy)/2.
By increasing the number of input states to n, we find the
general result in (3).

We note that a quantum optical version of the “resistor”-
type harmonic mean for the amplitude quadratures, 1/VH =∑n

i=1 1/Vi , can be also implemented exactly solely using
Gaussian operations, by replacing the array of beam splitters in
Fig. 1(c) with quantum nondemolition interactions. This, how-
ever, requires the use of additional squeezing resources and is
therefore not considered further in this Rapid Communication.

By using the averaging operations, it is possible to
stabilize the variances of n independent unstable squeezed-
state resources. As an example, let us consider four noise
resources with V = 0.25 and a single broken source with
V = 4 (both variances are normalized to the variance of a
vacuum state). The arithmetic mean transformation produces
a single source with VA = 1, whereas the harmonic-mean
transformation produces a source with VH = 0.31. Interest-
ingly, the arithmetic-mean protocol stabilizes the sources to
the shot-noise level and the harmonic mean stabilizes it below
the shot-noise level. Moreover, if another source is broken (also
with V = 4), then one gets an arithmetic mean of VA = 1.75
and a harmonic mean of VH = 0.40, which means that the

(a) (b)

FIG. 2. (Color online) Comparison between the two different
means. Variances of the arithmetic and harmonic means (a) for
an increasing number of resources (one with variance V = 4 and
V = 0.25 for the rest) and (b) for a supply of five resources with an
increasing number of noisy resources (with V = 4) and the rest being
quiet with V = 0.25.

harmonic-mean method is much less sensitive to the number
of broken resources. The two means are compared in Fig. 2(a)
for different numbers of resources and a single noisy resource
with V = 4 and in Fig. 2(b) for different numbers of noisy
resources with a total of five resources.

We note that stabilization procedures for an ample supply of
CV quantum informational states and for qubit transformations
were addressed theoretically in Ref. [9] and Refs. [10,11],
respectively. Unlike these proposals, in our work we stabilize
offline resources without disturbing the actual quantum proces-
sor. Furthermore we note that in contrast to Gaussian squeezed-
state distillation (which is not possible using linear optics [12]),
quantum averaging can be implemented with solely linear
optical elements and feedforward. In addition, we stress that
the squeezed-state distillation of non-Gaussian noise in Refs.
[13,14] was state dependent whereas our protocol is universal.

We experimentally implement the two averaging transfor-
mations for a supply of two quantum states (n = 2) that exhibit
either sub-Poissonian shot-noise behavior or super-Poissonian
shot-noise behavior. The schematic of our experiment is
depicted in Fig. 3. We prepare two Gaussian states using
optical parametric oscillators (OPOs) followed by amplitude
modulators (AMs). The OPOs are bow-tie-shaped cavities
with type I periodically poled KTP crystals [15,16]. To
produce a bright excitation of the squeezed beam and to
enable a cavity phase lock, we inject two auxiliary beams
into the cavity. Squeezed states are produced at 1064 nm by
pumping the parametric process with a mode-matched beam
at a wavelength of 532 nm. To produce a whole range of
different noise variances, the amplitude squeezed states are
sent through amplitude modulators AMs which are driven
by electronic noise sources with variable modulation depths.
Using such a combination of OPOs and AMs, the noise of
the amplitude quadratures can be tuned from sub-Poissonian
shot noise to super-Poissonian shot noise. To execute the
protocol, the resulting beams interfere (with a visibility higher
than 98%) on a balanced beam-splitter (BBS). The relative
phase is set such that the two beams add in quadratures.
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FIG. 3. (Color online) Schematic of the laboratory setup for the
implementation of quantum averaging. Squeezed states are prepared
in optical parametric oscillators (OPOs) and additional noise can be
added in amplitude modulators (AMs). The measurement-induced
harmonic-mean operation and the verification are performed with
homodyne detectors (HD1 and HD2). V1 and V2 are the input
variances, VA is the arithmetic mean, and VH is the harmonic
mean. BBS, balanced beams splitter; SP, signal processing; LO, local
oscillator.

The two output beams of the beam splitter are then measured
by homodyne detectors (HD1 and HD2). The measurements
are performed at the sideband frequency of 4.5 MHz with a
bandwidth of 300 kHz, and the output signals are amplified and
digitized at 5 × 106 samples per second. Data bins associated
with the measurements of the amplitude quadratures contain
approximately 6 × 104 data points.

The arithmetic mean is produced directly after the beam
splitter by discarding the outcomes of HD1. To implement
the harmonic-mean protocol, we postselect the outcomes of
HD2 based on the outcomes in HD1 with varying threshold
values: If the data point of HD1 is lower than the threshold
value, the corresponding data point of HD2 is kept; otherwise
it is discarded. The heralding process could, in principle,
also be implemented electro-optically to generate a freely
propagating averaged quantum state. However, to avoid such
complications, our conditioning is based on data postselection.

We present the experimental results for the arithmetic-mean
and harmonic-mean protocols in Fig. 4. Figure 4(a) shows the
results for two amplitude squeezed beams with variances V1 =

FIG. 4. (Color online) The arithmetic mean and the harmonic
mean as a function of the success rate PS for two different supplies
of resources. In panel (a), the two input states are squeezed with
variances V1 = 0.64 ± 0.01 and V2 = 0.90 ± 0.02, and in panel
(b), only one of the resources are squeezed with variance V1 =
0.62 ± 0.01 while the other resource has a variance V2 = 1.83 ± 0.02
above the quantum noise level (QNL). Theoretical predictions are
represented by solid (harmonic mean) and dashed (arithmetic mean)
curves. SNU, shot-noise unit.

0.64 ± 0.01 and V2 = 0.90 ± 0.02. We see that for a success
probability (ratio of the data kept after postselection to the ini-
tial data) of around 0.10, the harmonic-mean method produces
a state with VH = 0.74 ± 0.02, whereas the arithmetic-mean
method gives VA = 0.77 ± 0.02 (taken at a success probability
of 1). In this particular case the improvement of the amplitude
noise using the harmonic-mean method is very small and is
basically within the measurement uncertainty. However, the
superior performance of the harmonic mean with respect to
the arithmetic mean is clearly manifested by considering the
input variances of V1 = 0.62 ± 0.01 and V2 = 1.83 ± 0.04. As
shown in Fig. 4(b), for a success probability of 1 in this case the
arithmetic-mean method produces a state with VA = 1.22 ±
0.03, whereas the harmonic-mean method produces a squeezed
state for success probabilities lower than 0.60. With a success
probability around 0.10, the harmonic-mean method generates
a state with VH ≈ 0.90 ± 0.03. This shows that the universal
harmonic-mean strategy can stabilize very fragile and unstable
quantum noise sources below the quantum noise limit (QNL)
against a source that suddenly generates a large amount of
classical noise. The solid curves in Fig. 4 represent the theory,
taking into account various imperfections of the setup.

In the aforementioned analysis and experiment, the n

sources are completely independent and thus the amplitude
quadratures are uncorrelated, C = 〈X1, · · · ,Xn〉 = 0. We now
consider the situation of partially correlated sources. Although
the theory can be easily conducted for an arbitrary number
of sources, for simplicity we consider only the case of two
sources (n = 2) with a quadrature correlation described by the
coefficient C = 〈X1X2〉. Using the same setups as mentioned
earlier, we find that the arithmetic mean is modified to
AC = V1+V2

2 − C, whereas the probabilistic harmonic mean

is approaching HC = 2 V1V2−C2

V1+V2+2C
.

Through simple inspection, we see that the effect of the
correlations is a reduction of the mean values. Moreover,
we easily find that VH = HC if the correlations are unbiased
and otherwise VH > HC . We also stress that these protocols
are, as before, universal in the sense that no a priori
information about the input state is required to execute the
transformations. On the other hand, if the noise is maximally
correlated and unbiased (and this is a priori known), the
noise can be removed perfectly and deterministically as shown
in Ref. [17].

We now test the universal averaging protocols experimen-
tally using input states with partially correlated noise. The
two AMs were used to impose correlated noise onto the
two states by employing a joint electronic noise generator.
Due to the correlations, the noise interfere at the balanced
beam-splitter either constructively to produce a highly noisy
output state or destructively to produce an output state with
reduced noise. The output with reduced noise then directly
serves as the output of the arithmetic-mean protocol. To
execute the harmonic mean, the output with increased noise
is measured, postselected with different threshold values, and
finally used to herald the quadrature data measured with the
verifying detector (HD2). The experimental results of the
arithmetic and harmonic means for three different correlation
coefficients are shown in Fig. 5(a). For all implementations the
correlations were biased with the individual variances being
V1 = 1.95 ± 0.04 and V2 = 3.72 ± 0.07. We clearly see that,
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FIG. 5. (Color online) The influence of correlations between the
resource states. In panel (a), we plot the variances as a function of the
success probability for different degrees of correlation, and the results
are summarized in panel (b) for a success probability of 10%. The
variances of the input states are V1 = 1.95 ± 0.04 and V2 = 3.72 ±
0.07 for all realizations. Theoretical predictions are represented by
solid (harmonic mean) and dashed (arithmetic mean) curves. SNU,
shot-noise unit.

as the correlation becomes stronger, both the arithmetic-mean
variance and the harmonic-mean variance are reduced. This
trend is further illustrated in Fig. 5(b) where the success
probability for the harmonic mean is set to 0.10. In all figures
we insert the theoretical predictions (curves). This clearly
demonstrates that the quantum averaging process is improved
if the noises are correlated.

In summary, we have extended the notion of arithmetic
mean and, in particular, harmonic mean to the field of quantum
optics. Several schemes of implementing the arithmetic and
harmonic means of quadrature variances of a quantum state
of light have been devised. Experimentally, we have demon-
strated a probabilistic scheme for the implementation of the
harmonic mean based on a measurement-induced operation,
and the results have been compared to the results of a trivial
arithmetic-mean protocol. We found that the harmonic-mean
protocol is the best transformation for stabilizing squeezed-
state resources. It is interesting to note that the stabilization
of squeezed states of light using the harmonic-mean law can
be readily extended to other media, such as squeezing of
the collective spin of an atomic ensemble [18], squeezing in
Bose-Einstein condensates [19], and squeezing in plasmonic
systems [15]. As the squeezed state has been shown to
be the basic, irreducible offline resource for universal state
preparation [20,21] and universal quantum computation with
continuous variables [22,23], we foresee that the harmonic-
mean protocol might play a central role in future quantum
informational and metrological technologies.
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