20 research outputs found

    Genome-wide Analyses Identify KIF5A as a Novel ALS Gene

    Get PDF
    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.Peer reviewe

    CINmetrics: an R package for analyzing copy number aberrations as a measure of chromosomal instability

    No full text
    Genomic instability is an important hallmark of cancer and more recently has been identified in others like neurodegenrative diseases. Chromosomal instability, as a measure of genomic instability, has been used to characterize clinical and biological phenotypes associated with these diseases by measuring structural and numerical chromosomal alterations. There have been multiple chromosomal instability scores developed across many studies in the literature; however, these scores have not been compared because of the lack of a single tool available to calculate and facilitate these various metrics. Here, we provide an R package CINmetrics, that calculates six different chromosomal instability scores and allows direct comparison between them. We also demonstrate how these scores differ by applying CINmetrics to breast cancer data from The Cancer Genome Atlas (TCGA). The package is available on CRAN at https://cran.rproject.org/package=CINmetrics and on GitHub at https://github.com/lasseignelab/CINmetrics

    Evaluating cancer cell line and patient‐derived xenograft recapitulation of tumor and non‐diseased tissue gene expression profiles in silico

    No full text
    Abstract Background Preclinical models like cancer cell lines and patient‐derived xenografts (PDXs) are vital for studying disease mechanisms and evaluating treatment options. It is essential that they accurately recapitulate the disease state of interest to generate results that will translate in the clinic. Prior studies have demonstrated that preclinical models do not recapitulate all biological aspects of human tissues, particularly with respect to the tissue of origin gene expression signatures. Therefore, it is critical to assess how well preclinical model gene expression profiles correlate with human cancer tissues to inform preclinical model selection and data analysis decisions. Aims Here we evaluated how well preclinical models recapitulate human cancer and non‐diseased tissue gene expression patterns in silico with respect to the full gene expression profile as well as subsetting by the most variable genes, genes significantly correlated with tumor purity, and tissue‐specific genes. Methods By using publicly available gene expression profiles across multiple sources, we evaluated cancer cell line and patient‐derived xenograft recapitulation of tumor and non‐diseased tissue gene expression profiles in silico. Results We found that using the full gene set improves correlations between preclinical model and tissue global gene expression profiles, confirmed that glioblastoma (GBM) PDX global gene expression correlation to GBM tumor global gene expression outperforms GBM cell line to GBM tumor global gene expression correlations, and demonstrated that preclinical models in our study often failed to reproduce tissue‐specific expression. While including additional genes for global gene expression comparison between cell lines and tissues decreases the overall correlation, it improves the relative rank between a cell line and its tissue of origin compared to other tissues. Our findings underscore the importance of using the full gene expression set measured when comparing preclinical models and tissues and confirm that tissue‐specific patterns are better preserved in GBM PDX models than in GBM cell lines. Conclusion Future studies can build on these findings to determine the specific pathways and gene sets recapitulated by particular preclinical models to facilitate model selection for a given study design or goal

    Inferring chromosomal instability from copy number aberrations as a measure of chromosomal instability across human cancers

    No full text
    Abstract Background Cancer is a complex disease that is the second leading cause of death in the United States. Despite research efforts, the ability to manage cancer and select optimal therapeutic responses for each patient remains elusive. Chromosomal instability (CIN) is primarily a product of segregation errors wherein one or many chromosomes, in part or whole, vary in number. CIN is an enabling characteristic of cancer, contributes to tumor‐cell heterogeneity, and plays a crucial role in the multistep tumorigenesis process, especially in tumor growth and initiation and in response to treatment. Aims Multiple studies have reported different metrics for analyzing copy number aberrations as surrogates of CIN from DNA copy number variation data. However, these metrics differ in how they are calculated with respect to the type of variation, the magnitude of change, and the inclusion of breakpoints. Here we compared metrics capturing CIN as either numerical aberrations, structural aberrations, or a combination of the two across 33 cancer data sets from The Cancer Genome Atlas (TCGA). Methods and Results Using CIN inferred by methods in the CINmetrics R package, we evaluated how six copy number CIN surrogates compared across TCGA cohorts by assessing each across tumor types, as well as how they associate with tumor stage, metastasis, and nodal involvement, and with respect to patient sex. Conclusions We found that the tumor type impacts how well any two given CIN metrics correlate. While we also identified overlap between metrics regarding their association with clinical characteristics and patient sex, there was not complete agreement between metrics. We identified several cases where only one CIN metric was significantly associated with a clinical characteristic or patient sex for a given tumor type. Therefore, caution should be used when describing CIN based on a given metric or comparing it to other studies

    The landscape of SETBP1 gene expression and transcription factor activity across human tissues.

    No full text
    The SET binding protein 1 (SETBP1) gene encodes a transcription factor (TF) involved in various cellular processes. Variants in SETBP1 can result in three different diseases determined by the introduction (germline vs. somatic) and location of the variant. Germline variants cause the ultra-rare pediatric Schinzel Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disorder (SETBP1-HD), characterized by severe multisystemic abnormalities with neurodegeneration or a less severe brain phenotype accompanied by hypotonia and strabismus, respectively. Somatic variants in SETBP1 are associated with hematological malignancies and cancer development in other tissues in adults. To better understand the tissue-specific mechanisms involving SETBP1, we analyzed publicly available RNA-sequencing (RNA-seq) data from the Genotype-Tissue Expression (GTEx) project. We found SETBP1 and its known target genes were widely expressed across 31 adult human tissues. K-means clustering identified three distinct expression patterns of SETBP1 targets across tissues. Functional enrichment analysis (FEA) of each cluster revealed gene sets related to transcriptional regulation, DNA binding, and mitochondrial function. TF activity analysis of SETBP1 and its target TFs revealed tissue-specific TF activity, underscoring the role of tissue context-driven regulation and suggesting its impact in SETBP1-associated disease. In addition to uncovering tissue-specific molecular signatures of SETBP1 expression and TF activity, we provide a Shiny web application to facilitate exploring TF activity across human tissues for 758 TFs. This study provides insight into the landscape of SETBP1 expression and TF activity across 31 non-diseased human tissues and reveals tissue-specific expression and activity of SETBP1 and its targets. In conjunction with the web application we constructed, our framework enables researchers to generate hypotheses related to the role tissue backgrounds play with respect to gene expression and TF activity in different disease contexts

    uab-cgds-worthey/rosalution: Rosalution 0.6.0 - Supporting data accessibility, integration, curation, interoperability, and reuse for precision animal modeling

    No full text
    Maintainers @SeriousHorncat @JmScherer @fatimarabab New Contributors @jbarkley256 made their first contribution in https://github.com/uab-cgds-worthey/rosalution/pull/61 What's Changed Importing cases for analysis, with support of automated configured annotations of genomic units with support at curating evidence for analysis review. Attachment of supporting evidence as files or URLs Support for researchers entering case relevant information to be disseminated to research team Multi image attachment for curated figures for analyses Attachment of visual annotations associated with genomic units Viewing annotations for the genomic units in a case for analysis CAS user login, enabling organizations to connect to their Center Authentication Service for user credentials Filtering available analyses by data presented on analysis cards in the analysis feed Workflows to change analyses from being in preparation to ready, active, approved, declined, on-hold 3rd party attachments to link Monday.com and Phenotips URL to the specific analysis Full Changelog: https://github.com/uab-cgds-worthey/rosalution/compare/0.6.0-er...0.6.

    Ten simple rules for using public biological data for your research.

    No full text
    With an increasing amount of biological data available publicly, there is a need for a guide on how to successfully download and use this data. The 10 simple rules for using public biological data are: (1) use public data purposefully in your research; (2) evaluate data for your use case; (3) check data reuse requirements and embargoes; (4) be aware of ethics for data reuse; (5) plan for data storage and compute requirements; (6) know what you are downloading; (7) download programmatically and verify integrity; (8) properly cite data; (9) make reprocessed data and models Findable, Accessible, Interoperable, and Reusable (FAIR) and share; and (10) make pipelines and code FAIR and share. These rules are intended as a guide for researchers wanting to make use of available data and to increase data reuse and reproducibility

    Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets - Fig 1

    No full text
    <p>Clustering of kinase genes showing A) normal tissue on the left (N, red), tumor in the middle (T, blue) and metastatic tumor tissue on the right (M, purple), and B) hierarchical clustering of all normal (N, red), tumor (T, blue), and metastatic (M, purple) tissues. Figure legend: X-axis represents the tissue sample, Y-axis represents the kinases. Yellow: up regulated kinases, Blue: down regulated kinases.</p
    corecore