57 research outputs found

    Beam Longitudinal Dynamics Simulation Suite BLonD

    Get PDF
    The beam longitudinal dynamics code BLonD has been developed at CERN since 2014 and has become a central tool for longitudinal beam dynamics simulations. In this paper, we present this modular simulation suite and the various physics models that can be included and combined by the user. We detail the reference frame, the equations of motion, the BLonD-specific options for radio-frequency parameters such as phase noise, fixed-field acceleration, and feedback models for the CERN accelerators, as well as the modeling of collective effects and synchrotron radiation. We also present various methods of generating multi-bunch distributions matched to a given impedance model. BLonD is furthermore a well-tested and optimized simulation suite, which is demonstrated through examples, too

    Global economic burden of unmet surgical need for appendicitis

    Get PDF
    Background: There is a substantial gap in provision of adequate surgical care in many low-and middle-income countries. This study aimed to identify the economic burden of unmet surgical need for the common condition of appendicitis. Methods: Data on the incidence of appendicitis from 170 countries and two different approaches were used to estimate numbers of patients who do not receive surgery: as a fixed proportion of the total unmet surgical need per country (approach 1); and based on country income status (approach 2). Indirect costs with current levels of access and local quality, and those if quality were at the standards of high-income countries, were estimated. A human capital approach was applied, focusing on the economic burden resulting from premature death and absenteeism. Results: Excess mortality was 4185 per 100 000 cases of appendicitis using approach 1 and 3448 per 100 000 using approach 2. The economic burden of continuing current levels of access and local quality was US 92492millionusingapproach1and92 492 million using approach 1 and 73 141 million using approach 2. The economic burden of not providing surgical care to the standards of high-income countries was 95004millionusingapproach1and95 004 million using approach 1 and 75 666 million using approach 2. The largest share of these costs resulted from premature death (97.7 per cent) and lack of access (97.0 per cent) in contrast to lack of quality. Conclusion: For a comparatively non-complex emergency condition such as appendicitis, increasing access to care should be prioritized. Although improving quality of care should not be neglected, increasing provision of care at current standards could reduce societal costs substantially

    Pooled analysis of WHO Surgical Safety Checklist use and mortality after emergency laparotomy

    Get PDF
    Background The World Health Organization (WHO) Surgical Safety Checklist has fostered safe practice for 10 years, yet its place in emergency surgery has not been assessed on a global scale. The aim of this study was to evaluate reported checklist use in emergency settings and examine the relationship with perioperative mortality in patients who had emergency laparotomy. Methods In two multinational cohort studies, adults undergoing emergency laparotomy were compared with those having elective gastrointestinal surgery. Relationships between reported checklist use and mortality were determined using multivariable logistic regression and bootstrapped simulation. Results Of 12 296 patients included from 76 countries, 4843 underwent emergency laparotomy. After adjusting for patient and disease factors, checklist use before emergency laparotomy was more common in countries with a high Human Development Index (HDI) (2455 of 2741, 89.6 per cent) compared with that in countries with a middle (753 of 1242, 60.6 per cent; odds ratio (OR) 0.17, 95 per cent c.i. 0.14 to 0.21, P <0001) or low (363 of 860, 422 per cent; OR 008, 007 to 010, P <0.001) HDI. Checklist use was less common in elective surgery than for emergency laparotomy in high-HDI countries (risk difference -94 (95 per cent c.i. -11.9 to -6.9) per cent; P <0001), but the relationship was reversed in low-HDI countries (+121 (+7.0 to +173) per cent; P <0001). In multivariable models, checklist use was associated with a lower 30-day perioperative mortality (OR 0.60, 0.50 to 073; P <0.001). The greatest absolute benefit was seen for emergency surgery in low- and middle-HDI countries. Conclusion Checklist use in emergency laparotomy was associated with a significantly lower perioperative mortality rate. Checklist use in low-HDI countries was half that in high-HDI countries.Peer reviewe

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone

    Numerical noise due to binning in macroparticle simulations

    No full text
    Numerical noise is an important parameter to minimize to ensure convergence of the macroparticle simulation results. In the context of simulations done for longitudinal beam dynamics studies, the longitudinal line density is usually obtained by binning a macroparticle distribution to compute wake potentials. The noise due to the binning can lead to artificial emittance blow-up or erronously trigger beam instability too early. Convergence studies are presently done empirically, to verify that results are not drastically changing with the number of macroparticles. In this note, an analytical expression for the noise amplitude as a function of the bunch spectrum frequency for a stationary distribution is benchmarked against numerical calculations. The analytical expression is then used to express the relevant scaling laws of the numerical noise and define a basic criterion on the number of macroparticles to use for different cases

    Longitudinal Space Charge in the SPS

    No full text
    Longitudinal instabilities due to the SPS beam coupling impedance are a major issue for future projects and it is essential to have an accurate SPS impedance model to study them. The longitudinal space charge effect can be modelled by a pure reactive impedance and should also be included in simulations as it may have an impact at low energy. In this Note, the effect of the longitudinal space charge in the SPS is evaluated by taking into account the variation of the transverse beam size and vacuum chamber geometry along the ring. Scaling laws are used to investigate what are the most important parameters for the evaluation of the longitudinal space charge impedance

    Beam Measurements of the Longitudinal impedance of the CERN Super Proton Synchrotron

    No full text
    One of the main challenges of future physics projects based on particle accelerators is the need for high intensity beams. However, collective effects are a major limitation which can deteriorate the beam quality or limit the maximum intensity due to losses. The CERN SPS, which is the last injector for the LHC, is currently unable to deliver the beams required for future projects due to longitudinal instabilities. The numerous devices in the machine (accelerating RF cavities, injection and extraction magnets, vacuum flanges. etc.) lead to variations in the geometry and material of the chamber through which the beam is travelling. The electromagnetic interaction within the beam (space charge) and of the beam with its environment are described by a coupling impedance which affects the motion of the particles and leads to instabilities for high beam intensities. Consequently, the critical impedance sources should be identified and solutions assessed. To have a reliable impedance model of an accelerator, the contributions of all the devices in the ring should be evaluated from electromagnetic simulations and measurements. In this theses, the beam itself is used to probe the machine impedance by measuring the synchrotron frequency shift with intensity and bunch length, as well as the line density modulation of long bunches injected with the RF voltage switched off. These measurements are compared with macroparticle simulations using the existing SPS impedance model, and the deviations are studied to identify missing impedance sources and to refine the model. The next important step is to reproduce in simulations the measured single bunch instabilities during acceleration, in single and double RF system operation. Thanks to the improved impedance model, a better understanding of instability mechanisms is achieved for both proton and ion beams. Finally, as the simulation model was shown to be trustworthy, it is used to estimate the beam characteristics after the foreseen SPS upgrades the High Luminosity-LHC project at CERN

    Mesures de l'Impédance Longitudinale avec le Faisceau du CERN Super Proton Synchrotron

    No full text
    One of the main challenges of future physics projects based on particle accelerators is the need for high intensity beams. However, collective effects are a major limitation which can deteriorate the beam quality or limit the maximum intensity due to losses. The CERN SPS, which is the last injector for the LHC, is currently unable to deliver the beams required for future projects due to longitudinal instabilities.The numerous devices in the machine (accelerating RF cavities, injection and extraction magnets, vacuum flanges, etc.) lead to variations in the geometry and material of the chamber through which the beam is travelling. The electromagnetic interaction within the beam (space charge) and of the beam with its environment are described by a coupling impedance which affects the motion of the particles and leads to instabilities for high beam intensities. Consequently, the critical impedance sources should be identified and solutions assessed. To have a reliable impedance model of an accelerator, the contributions of all the devices in the ring should be evaluated from electromagnetic simulations and measurements.In this thesis, the beam itself is used to probe the machine impedance by measuring the synchrotron frequency shift with intensity and bunch length, as well as the line density modulation of long bunches injected with the RF voltage switched off. These measurements are compared with macroparticle simulations using the existing SPS impedance model, and the deviations are studied to identify missing impedance sources and to refine the model.The next important step is to reproduce in simulations the measured single bunch instabilities during acceleration, in single and double RF system operation. Thanks to the improved impedance model, a better understanding of instability mechanisms is achieved for both proton and ion beams.Finally, as the simulation model was shown to be trustworthy, it is used to estimate the beam characteristics after the foreseen SPS upgrades the High Luminosity-LHC project at CERN.Un des défis pour les futurs projets en physique basé sur les accélérateurs de particules est le besoin de faisceaux à hautes intensités. Les effets collectifs sont cependant une limitation majeure qui peuvent détériorer la qualité du faisceau ou limiter l'intensité maximale à cause des pertes. Le CERN SPS, qui est le dernier injecteur pour le LHC, n'est actuellement pas en mesure de délivrer les faisceaux requis pour les futurs projets à cause des instabilités longitudinales.Les nombreux équipements dans la machine (les cavités RF accélératrices, les aimants d'injection et d'extraction, les brides de vide, etc.) entrainent des variations dans la géométrie et les matériaux de la chambre dans laquelle le faisceau transite. Les interactions électromagnétiques internes au faisceau (charge d'espace) et du faisceau avec son environnement sont représentées par une impédance de couplage qui affectent le mouvement des particules et mènent à des instabilités pour des intensités élevées de faisceau. Par conséquent, les sources d'impédance critiques doivent être identifiées et des solutions évaluées. Pour avoir un modèle d'impédance fiable d'un accélérateur, les contributions de tous les équipements dans l'anneau doivent être évaluées à partir de simulations et de mesures électromagnétiques. Dans cette thèse, le faisceau lui-même est utilisé comme une sonde de l'impédance de la machine en mesurant le déplacement de la fréquence synchrotronique avec l'intensité et la longueur du paquet, ainsi que la modulation de longs paquets injectés avec la tension RF éteinte. Ces mesures sont comparées avec des simulations par macroparticules en utilisant le modèle d'impédance du SPS existant, et les déviations sont étudiées pour identifier les sources d'impédance manquantes pour raffiner le modèle.L'étape suivante consiste à reproduire en simulations les instabilités mesurées pour un paquet unique durant l'accélération. Grâce à l'amélioration du modèle d'impédance, une meilleure compréhension des mécanismes de l'instabilité est rendue possible pour les faisceaux de protons et d'ions. Finalement, le modèle pour les simulations étant digne de confiance, il est utilisé pour estimer les caractéristiques du faisceau après les améliorations prévues du SPS pour le projet High Luminosity-LHC au CERN

    Modelling of the PS Beam Phase and Radial Feedback Loops

    No full text
    This document describes the current models for the beam phase and the radial feedback loops of the analogue PS longitudinal beam control. Firstly, the analogue controls themselves are reviewed. Afterwards, the numerical filters modelling the loops, as well as their frequency responses, are shown and elaborated upon. Secondly, the methodology used to determine the proportional gains of both loops from beam-based measurements is presented in detail. Finally, the accuracy of these models is verified by comparing measurements to tracking simulations using the BLonD code. These simulations are shown to give good agreement with measurements, and proven reliable for more advanced studies such as RF manipulations for fixed-target beams in the PS (TOF/EAST)
    corecore