44 research outputs found

    Post-epidemic Schmallenberg virus circulation: parallel bovine serological and Culicoides virological surveillance studies in Ireland

    Get PDF
    peer-reviewedBackground Schmallenberg virus (SBV) emerged in northern-Europe in 2011 resulting in an epidemic of ruminant abortions and congenital malformations throughout the continent. In the years following the epidemic there have been reports of SBV overwintering and continued circulation in several European countries. When the population-level of immunity declines in exposed regions, re-introduction of SBV could result in further outbreaks of Schmallenberg disease. The aims of this study were to determine the SBV seroprevalence in previously exposed Irish dairy herds in 2014 and to investigate if SBV continued to circulate in these herds in the three years (2013–2015) following the Irish Schmallenberg epidemic. Whole-herd SBV serosurveillance was conducted in 26 herds before (spring) and following the 2014 vector-season (winter), and following the 2015 vector-season (winter). In spring 2014, 5,531 blood samples were collected from 4,070 cows and 1,461 heifers. In winter 2014, 2,483 blood samples were collected from 1,550 youngstock (8–10 months old) and a subsample (n = 933; 288 cows, 645 heifers) of the seronegative animals identified in the spring. Youngstock were resampled in winter 2015. Culicoides spp. were collected in 10 herds during the 2014 vector-season and analysed for SBV; a total of 138 pools (3,048 Culicoides) from 6 SBV vector species were tested for SBV RNA using real-time PCR. Results In spring 2014, animal-level seroprevalence was 62.5 % (cows = 84.7 %; heifers = 0.6 %). Within-herd seroprevalence ranged widely from 8.5 %–84.1 % in the 26 herds. In winter 2014, 22 animals (0.9 %; 10 cows, 5 heifers, 7 youngstock) originating in 17 herds (range 1–4 animals/herd) tested seropositive. In winter 2015 all youngstock, including the 7 seropositive animals in winter 2014, tested seronegative suggesting their initial positive result was due to persistence of maternal antibodies. All of the Culicoides pools examined tested negative for SBV-RNA. Conclusions SBV appears to have recirculated at a very low level in these herds during 2013 and 2014, while there was no evidence of SBV infection in naïve youngstock during 2015. A large population of naïve animals was identified and may be at risk of infection in future years should SBV re-emerge and recirculate as it has done in continental Europe.This research was funded in the Teagasc project MKAB-6520 and the Teagasc Walsh Fellowship Scheme. The rt-RT-PCR testing of Culicoides was financed from the National Centre for Research and Development (NCBiR) in Poland project No PBS2/A8/24/2013

    The tree that hides the forest: Cryptic diversity and phylogenetic relationships in the Palaearctic vector Obsoletus/Scoticus Complex (Diptera: Ceratopogonidae) at the European level

    Get PDF
    Background: Culicoides obsoletus is an abundant and widely distributed Holarctic biting midge species, involved in the transmission of bluetongue virus (BTV) and Schmallenberg virus (SBV) to wild and domestic ruminants. Females of this vector species are often reported jointly with two morphologically very close species, C. scoticus and C. montanus, forming the Obsoletus/Scoticus Complex. Recently, cryptic diversity within C. obsoletus was reported in geographically distant sites. Clear delineation of species and characterization of genetic variability is mandatory to revise their taxonomic status and assess the vector role of each taxonomic entity. Our objectives were to characterize and map the cryptic diversity within the Obsoletus/Scoticus Complex. Methods: Portion of the cox1 mitochondrial gene of 3763 individuals belonging to the Obsoletus/Scoticus Complex was sequenced. Populations from 20 countries along a Palaearctic Mediterranean transect covering Scandinavia to Canary islands (North to South) and Canary islands to Turkey (West to East) were included. Genetic diversity based on cox1 barcoding was supported by 16S rDNA mitochondrial gene sequences and a gene coding for ribosomal 28S rDNA. Species delimitation using a multi-marker methodology was used to revise the current taxonomic scheme of the Obsoletus/Scoticus Complex. Results: Our analysis showed the existence of three phylogenetic clades (C. obsoletus clade O2, C. obsoletus clade dark and one not yet named and identified) within C. obsoletus. These analyses also revealed two intra-specific clades within C. scoticus and raised questions about the taxonomic status of C. montanus. Conclusions: To our knowledge, our study provides the first genetic characterization of the Obsoletus/Scoticus Complex on a large geographical scale and allows a revision of the current taxonomic classification for an important group of vector species of livestock viruses in the Palaearctic region.[Figure not available: See fulltext.

    The tree that hides the forest : cryptic diversity and phylogenetic relationships in the Palaearctic vector Obsoletus/Scoticus Complex (Diptera: Ceratopogonidae) at the European level

    Get PDF
    Correction: Volume: 13 Issue: 1 Article Number: 483 DOI: 10.1186/s13071-020-04349-yBackgroundCulicoides obsoletus is an abundant and widely distributed Holarctic biting midge species, involved in the transmission of bluetongue virus (BTV) and Schmallenberg virus (SBV) to wild and domestic ruminants. Females of this vector species are often reported jointly with two morphologically very close species, C. scoticus and C. montanus, forming the Obsoletus/Scoticus Complex. Recently, cryptic diversity within C. obsoletus was reported in geographically distant sites. Clear delineation of species and characterization of genetic variability is mandatory to revise their taxonomic status and assess the vector role of each taxonomic entity. Our objectives were to characterize and map the cryptic diversity within the Obsoletus/Scoticus Complex.MethodsPortion of the cox1 mitochondrial gene of 3763 individuals belonging to the Obsoletus/Scoticus Complex was sequenced. Populations from 20 countries along a Palaearctic Mediterranean transect covering Scandinavia to Canary islands (North to South) and Canary islands to Turkey (West to East) were included. Genetic diversity based on cox1 barcoding was supported by 16S rDNA mitochondrial gene sequences and a gene coding for ribosomal 28S rDNA. Species delimitation using a multi-marker methodology was used to revise the current taxonomic scheme of the Obsoletus/Scoticus Complex.ResultsOur analysis showed the existence of three phylogenetic clades (C. obsoletus clade O2, C. obsoletus clade dark and one not yet named and identified) within C. obsoletus. These analyses also revealed two intra-specific clades within C. scoticus and raised questions about the taxonomic status of C. montanus.ConclusionsTo our knowledge, our study provides the first genetic characterization of the Obsoletus/Scoticus Complex on a large geographical scale and allows a revision of the current taxonomic classification for an important group of vector species of livestock viruses in the Palaearctic region.Peer reviewe

    How is Europe positioned for a re-emergence of Schmallenberg virus?

    Get PDF
    The Schmallenberg virus (SBV) caused a large scale epidemic in Europe from 2011–2013 infecting ruminants and causing fetal deformities after infection of pregnant animals. The main impacts of the virus were financial losses due to animal, meat and semen trade restrictions. Even though effective vaccines were produced, their uptake was never high. This along with the subsequent decline in new SBV infections and natural replacement of previously exposed livestock has resulted in a drop in the number of protected animals. Recent surveillance has found a large population of naïve animals currently present in Europe and the virus circulating at a low level. These changes in animal status in combination with favourable conditions for the insect vectors may open the door to the re-emergence of the virus and another large-scale outbreak in Europe. This review details the potential and preparedness for SBV re-emergence in Europe, discusses possible co-ordinated sentinel monitoring programmes both for ruminant seroconversion and the presence of virus in the insect vectors and provides an overview of the economic impact associated with diagnosis, control and the effect of non-vaccination

    Monthly variation in the probability of presence of adult Culicoides populations in nine European countries and the implications for targeted surveillance

    Get PDF
    Background: Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are small hematophagous insects responsible for the transmission of bluetongue virus, Schmallenberg virus and African horse sickness virus to wild and domestic ruminants and equids. Outbreaks of these viruses have caused economic damage within the European Union. The spatio-temporal distribution of biting midges is a key factor in identifying areas with the potential for disease spread. The aim of this study was to identify and map areas of neglectable adult activity for each month in an average year. Average monthly risk maps can be used as a tool when allocating resources for surveillance and control programs within Europe. Methods : We modelled the occurrence of C. imicola and the Obsoletus and Pulicaris ensembles using existing entomological surveillance data from Spain, France, Germany, Switzerland, Austria, Denmark, Sweden, Norway and Poland. The monthly probability of each vector species and ensembles being present in Europe based on climatic and environmental input variables was estimated with the machine learning technique Random Forest. Subsequently, the monthly probability was classified into three classes: Absence, Presence and Uncertain status. These three classes are useful for mapping areas of no risk, areas of high-risk targeted for animal movement restrictions, and areas with an uncertain status that need active entomological surveillance to determine whether or not vectors are present. Results: The distribution of Culicoides species ensembles were in agreement with their previously reported distribution in Europe. The Random Forest models were very accurate in predicting the probability of presence for C. imicola (mean AUC = 0.95), less accurate for the Obsoletus ensemble (mean AUC = 0.84), while the lowest accuracy was found for the Pulicaris ensemble (mean AUC = 0.71). The most important environmental variables in the models were related to temperature and precipitation for all three groups. Conclusions: The duration periods with low or null adult activity can be derived from the associated monthly distribution maps, and it was also possible to identify and map areas with uncertain predictions. In the absence of ongoing vector surveillance, these maps can be used by veterinary authorities to classify areas as likely vector-free or as likely risk areas from southern Spain to northern Sweden with acceptable precision. The maps can also focus costly entomological surveillance to seasons and areas where the predictions and vector-free status remain uncertain
    corecore