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Abstract 14 

The Schmallenberg virus (SBV) caused a large scale epidemic in Europe from 2011–2013 15 

infecting ruminants and causing fetal deformities after infection of pregnant animals. The main 16 

impacts of the virus were financial losses due to animal, meat and semen trade restrictions.  17 

Even though effective vaccines were produced, their uptake was never high. This along with the 18 

subsequent decline in new SBV infections and natural replacement of previously exposed livestock 19 

has resulted in a drop in the number of protected animals. Recent surveillance has found a large 20 

population of naïve animals currently present in Europe and the virus circulating at a low level. 21 

These changes in animal status in combination with favourable conditions for the insect vectors 22 

may open the door to the re-emergence of the virus and another large-scale outbreak in Europe. 23 

This review details the potential and preparedness for SBV re-emergence in Europe, discusses 24 

possible co-ordinated sentinel monitoring programmes both for ruminant seroconversion and the 25 

presence of virus in the insect vectors and provides an overview of the economic impact associated 26 

with diagnosis, control and the effect of non-vaccination.  27 

 28 

 29 
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Introduction 32 

Schmallenberg virus (SBV) is an Orthobunyavirus of the Simbu serogroup that was 33 

responsible for a large-scale outbreak of fetal deformities in lambs and calves in Northern Europe in 34 

2011–13 (Hoffmann et al., 2012). The virus causes little or no disease in adult animals but displays 35 

a distinct tropism for the central nervous system of lambs and calves infected in utero leading to a 36 

range of distinctive deformities including hydrocephalus and arthrogryposis (Bayrou et al., 2014; 37 

Peperkamp et al., 2015). In the years since its initial emergence, SBV appears to have settled to a 38 

low-level endemic circulation. Considerable research into SBV and its epidemiology (Helmer et al., 39 

2013; Luttikholt et al., 2014; Veldhuis et al., 2014) has been conducted since its discovery, 40 

including the development of commercial vaccines (Kraatz et al., 2015). However, several years of 41 

little or no clinical disease and a lack of clarity about the economic impacts have resulted in very 42 

poor uptake of the vaccine. It is also unclear what conditions could result in a further large scale 43 

outbreak, but it is likely that herd-level immunity to the virus at a European and a local level has 44 

decreased, creating the potential conditions for another outbreak of fetal deformities. This review 45 

summarises the current state of preparedness for further SBV outbreaks in Europe.  46 

 47 

First detection and initial spread of SBV 48 

SBV was first detected in Europe in the beginning of September 2011. Infections appeared 49 

near simultaneously in 2011 in neighbouring countries Germany, the Netherlands and Belgium. By 50 

February 2012 and May 2012 peaks in infections in sheep and cattle respectively had been 51 

identified. At the height of the outbreak in 2013, SBV cases were reported in 13,846 herds in 29 52 

countries, with 8730 being laboratory confirmed. It is difficult to calculate the actual numbers of 53 

animals affected as only herd level data were collected and reported in many countries (Afonso et 54 

al., 2014). In the UK, seroprevalence in the most affected counties by the end of 2013 was 73%. 55 

However, in other UK areas, this figure was less than 50% suggesting there were a large number of 56 

animals still at risk (King et al., 2015). Circulation re-occurred the next winter and spring, though at 57 



a lower peak than in 2011/12, probably due to large numbers of animals with pre-existing immunity 58 

(EFSA, 2012a). 59 

 60 

SBV spreads extremely rapidly, estimated from EU Nomenclature of Territorial Units for 61 

Statistics (NUTS) to be 6 days from region to region (Sedda and Rogers, 2013). It has been reported 62 

in climate ranges from the Mediterranean basin (Italy and Spain) to more than lattitude 60 ° north 63 

(Norway) (Balseiro et al., 2015; Monaco et al., 2013; Wisløff et al., 2014). Spread of the virus has 64 

tended to be from close-by infected regions to the next region, rarely exceeding 200 km at a time 65 

(Afonso et al., 2014). Interestingly, modelling the spread of SBV using mathematical methods has 66 

replicated the spread of SBV across Europe, uncovering a high vector competence and high 67 

replication rate for temperatures common in Europe (16-34°C) (EFSA, 2014; Gubbins et al., 68 

2014a). 69 

 70 

It is still unclear where the virus originated from but at least two studies have demonstrated 71 

SBV cross reactive antibodies (along with several other Simbu group viruses) in cattle in Africa 72 

prior to or after the European outbreak. In the Middle East a Simbu serogroup virus related to Aino 73 

virus was found recently, causing clinical signs similar to SBV in infected ruminants (Abutarbush et 74 

al., 2015). Several historical and recent reports have highlighted that viruses from the Simbu group, 75 

many of which have teratogenic potential, circulate within the Mediterranean basin (Lievaart-76 

Peterson et al., 2012; Azkur et al., 2013; Chaintoutis et al., 2014; Yilmaz et al., 2014).  77 

At the height of the original outbreak in Europe, herds in Northern Europe were reporting 78 

essentially all animals seroconverting to the virus, 98.5–99.8% in adult cattle and 89% in sheep 79 

(Méroc et al., 2013; Veldhuis et al., 2013) at herd level. 80 

 81 

Virus transmission 82 

SBV, like many other Bunyaviruses, is an arbovirus, i.e. it is transmitted via arthropod 83 



vectors. The fact that the virus relies on vector transmission limits antigenic drift as mutations that 84 

could confer advantages in final host replication could be disadvantageous in the vector. This 85 

bottleneck has also been seen in other RNA viruses that depend on mosquito vectors, such as 86 

Venezuelan equine encephalitis virus (Forrester et al., 2012). SBV has also been found to have a 87 

low mutation rate both in vitro, even when passaged 10 times, and in vivo (Hoffmann et al., 2015). 88 

Several field studies of virus variability have also demonstrated that the virus is relatively stable 89 

over time (Coupeau et al 2016; Izzo et al., 2016).  90 

 91 

Direct horizontal transmission by contact has not been detected, even when infected cows 92 

were kept in close proximity to uninfected cows (Wernike, 2013a). The presence of different 93 

species of insects might determine the speed and pattern of infection in different farms (Ayllón et 94 

al., 2014; Bessell et al., 2014). The main vectors are thought to be species in the obsoletus complex 95 

of Culicoides, or biting midges, including Culicoides chiopterus, dewulfi and scoticus (Balenghien 96 

et al., 2014; De Regge et al., 2012). Experimental studies with C. sonorensis (Veronesi et al., 2013), 97 

a known vector of bluetongue virus, have shown that these midges can also produce a competent 98 

infection and could act as a reservoir of the virus. Importantly, midges are most abundant between 99 

April and October, with a ‘peak midge season’ between July to September, which coincides with 100 

the peak of SBV seroconversion in 2012/2013 (Mellor et al., 2000; EFSA, 2012b; Larska et al., 101 

2013; Veldhuis et al., 2013). 102 

 103 

It is probable that SBV can overwinter in midges. Viral RNA has been detected in midges 104 

belonging to the obsoletus complex over-winter in north Italian farms 3 months after the SBV 105 

outbreak (Goffredo et al., 2013). Furthermore, these midges can become active at temperatures as 106 

low as 3.5°C (Sprygin et al., 2014). In Germany, it was reported that midges could be trapped 107 

during warmer (~9°C) winter days (Wernike et al., 2013c). SBV spread in winter does occur 108 

(Davies and Daly, 2013), but is likely to be limited as the threshold for replication of the virus 109 



appears to be between 12 and 13°C (Gubbins et al., 2014b).  110 

 111 

Wind also plays an important role in the transmission of the virus, as midges are easily 112 

carried on air currents. (Sedda et al., 2012; Sedda and Rogers, 2013). UK Meteorological office 113 

atmospheric dispersion models proved accurate at predicting SBV outbreaks due to midge spread. 114 

South-east, south and south-west counties in the UK were found at increased risk of outbreaks 115 

(Met-Office, 2012), from ‘midge plumes’ from mainland Europe. Wind models for midge dispersal 116 

in mainland Europe have also been used and have found that 70% of the spatial and temporal 117 

distribution of affected farms could be explained by wind movements (Sedda and Rogers, 2013).  118 

 119 

Clinical disease 120 

The main clinical disease seen in adult animals is fever, diarrhoea and, in the case of 121 

lactating animals, ‘milk drop’ syndrome. This is usually mild and self-limiting (Wernike et al., 122 

2012, 2013a, 2013b), however during the initial SBV outbreak due to the numbers of animals 123 

involved, there was a significant effect on farm level milk production (Toson et al., 2015; Veldhuis 124 

et al., 2014). Interestingly, neither field nor experimental infections produced clinical signs in adult 125 

sheep, goats or alpacas (Wernike et al., 2012, 2013a, 2013b; Poskin et al., 2014; Laloy et al., 2015; 126 

Schulz et al., 2015). The virus however readily crosses the placenta and has been isolated from the 127 

cerebrum, nerve and astroglial cells and spinal cords of lambs (Bilk et al., 2012; Varela et al., 128 

2013). After crossing the placenta, the virus infects and attacks the fetal central nervous system and 129 

the cerebral cortex, possibly causing necrosis (Agerholm et al., 2015). 130 

 131 

Since SBV targets these critical cells, the level of CNS development, and therefore the 132 

susceptible period of infection, determines the severity of lesions. Consistent with infection with 133 

other Bunyaviridae (Kurogi et al., 1977; Kirkland et al., 1988), infection in mid-gestation appears to 134 

be the defining factor causing these abnormalities. SBV infection from 60–180 days in cattle 135 



(Wernike et al., 2014) leads to severe dysplastic CNS lesions (Peperkamp et al., 2015). Infection 136 

during late pregnancy, when the CNS and the fetuses own immune system responses are more 137 

developed results in less severe clinical signs such as non-suppurative inflammation in the brain and 138 

spinal cord (Peperkamp et al., 2015). The typical arthrogryposis is thought to be a secondary 139 

clinical sign indicative of neuronal loss, leading to a muscle activity imbalance and a failure of 140 

normal muscle and joint development. This is supported by the fact that the virus is not found in the 141 

skeleton or muscle in fetuses (Bayrou et al., 2014; Peperkamp et al., 2015). 142 

 143 

Reports of early pregnancy loss (presenting as a failure to conceive) were a feature of the 144 

SBV outbreak. SBV infected sheep during the SBV outbreak in Belgium, had a doubling of 145 

abortions compared to non-infected flocks (Saegerman et al., 2014).  Similarly, SBV infected flocks 146 

from Ireland to Germany also had a 10–50% reduction in weaning rates reflecting both increased 147 

abortions and increased mortality during early lamb life ( Helmer et al., 2013; Wernike et al., 148 

2013b; Dominguez et al., 2014; Luttikholt et al., 2014; Barrett et al., 2015; Martinelle et al., 2015; 149 

Toson et al., 2015; Wüthrich et al., 2016). Some studies of affected dairy cattle herds have also 150 

demonstrated a detrimental impact in fertility parameters (including an increase in animals failing to 151 

conceive) during SBV outbreaks (Veldhuis et al., 2014) whereas others did not (Luttikholt et al., 152 

2014).  153 

 154 

Diagnosis 155 

The European Food Safety Authority released case definitions and diagnostic standards for 156 

SBV, which have been widely adopted by member states of the European Union (EFSA, 2012a, 157 

2012b). Suspect clinical cases include fetuses with two or more signs of arthrogryposis, 158 

hydranencephaly, spinal abnormalities such as kyphosis and scoliosis, joint malformation, limb 159 

paralysis and muscle atrophy (Afonso et al., 2014). Blindness and abnormal behaviour in neonates 160 

are also suspect signs. In adult animals, fever >40 °C, reduced appetite and milk drop (with no other 161 



apparent reason) can lead to suspicion of viral infection. 162 

 163 

Virus can be isolated in cell culture. However, RT-qPCR to detect viral RNA was generally 164 

used during the outbreak to confirm viral infection in fetuses or neonates. In adult animals, 165 

seropositivity has been detected by a variety of ELISA-based methods or with virus neutralisation 166 

tests (Loeffen et al., 2012; Breard et al., 2013; Afonso et al., 2014). Problems exist with either 167 

method for confirmation of the causality of the disease. For RT-qPCR assays, there is a narrow 168 

window of time where the virus can be detected in tissue/blood; fetuses with typical clinical signs of 169 

the disease may have cleared the virus before birth and therefore test negative on RT-qPCR. Most 170 

ELISA tests are not able to distinguish between different members of the Simbu serogroup of 171 

viruses, therefore serum neutralisation tests are required to definitively identify which virus an 172 

animal has been exposed to in regions where multiple viruses are circulating (Abutarbush et al., 173 

2015; Mathew et al., 2015).  Although serum neutralisation tests are more specific than ELISA, 174 

they are time consuming to perform and require cell culture facilities. These serological tests can 175 

confirm past infection but cannot give an indication of the timing of that infection in relation to the 176 

birth of an affected fetus (Bouwstra et al., 2013). Testing of the antibody response of the fetus (via 177 

fetal thoracic fluid testing) has been suggested as a more useful test for confirmation of SBV 178 

infection in deformed calves and lambs (De Regge et al., 2013).  179 

 180 

Herd level testing via bulk milk tank sampling was widely used at the height of the outbreak 181 

to confirm the geographical spread of the virus. There are, however, reports of herds with high 182 

values when bulk tank milk was tested by ELISA where the within-herd prevalence of antibodies is 183 

actually low (Tarlinton and Daly, 2013). Individually-sampled milk shows a strong correlation with 184 

serum results from the same animal, potentially providing a non-invasive method of determining 185 

within-herd exposure for dairy farms (Daly et al., 2015). Furthermore, detection of antibodies in 186 

saliva by ELISA provides another non-invasive, fast method to determine prevalence of antibodies 187 



(Lazutka et al., 2015).  188 

 189 

Control  190 

Attempts were made during the initial outbreak to limit midge numbers through 191 

environmental controls (insecticide dipping of animals, breaking up of manure from midge breeding 192 

sites). Chemical treatment of sheep has shown some promise in reducing numbers of midges 193 

(Weiher et al., 2014) however environmental control of midge breeding sites on farms has so far 194 

failed to impact on insect numbers (Harrup et al., 2014). The seemingly high replication efficiency 195 

and spread of SBV in Culicoides spp. especially when compared with bluetongue virus (BTV), 196 

(spread by the same main vectors) also limits the use of insect control methods in the control of 197 

SBV (EFSA, 2014; Veronesi et al., 2013) 198 

 199 

There have been three commercial vaccines released against the virus, all of which are 200 

adjuvanted inactivated (‘killed’) virus vaccines. The first vaccine available was brought to market in 201 

record time under a provisional registration, however the speed of introduction and licencing route 202 

has meant that comprehensive data on efficacy and safety in pregnant animals (a crucial group to 203 

protect) has not been available. In a study of prototype killed virus vaccines, onset of immunity in 204 

cattle and sheep was demonstrated three weeks after the second of two doses given three weeks 205 

apart (Wernike et al., 2013d). This type of vaccine appears to be effective in preventing viral 206 

replication in animals, with sheep protected when challenged 3 weeks after a single dose 207 

(Hechinger et al., 2014). Natural infection has been shown to induce persistent antibodies in 208 

infected cows, lasting at least 36 months (Elbers et al., 2014; Méroc et al., 2015, Wernike et al 209 

2015b). 210 

 211 

Anecdotal reports and the author’s observations have indicated that uptake of the 212 

commercial SBV vaccines has been low and the fact that none of the released vaccines are currently 213 



available (March 2017) would attest to this. Recent data in England showed that even though half of 214 

124 farmers surveyed suspected cases of SBV on their farm, only 13.7% had vaccinated in 2013, 215 

with that figure falling to 1.6% in 2014. One farm had vaccinated cattle but not sheep (Stokes et al., 216 

2016). There are a number of potential reasons for a lack of interest from farm managers in 217 

vaccinating against SBV. In our own unpublished data from surveys of UK farms in 2013 only one 218 

farm in 20 was planning on vaccinating for SBV. A recurrent theme in responses was the perception 219 

that SBV “would disappear like bluetongue” usually indicating that European farmers did not feel it 220 

was economically viable to maintain vaccination programmes for intermittent vector borne diseases. 221 

Indeed, in the Netherlands the circulation of the virus in 2013 was <1% with a low number of 222 

seropositive animals (Veldhuis et al., 2015). 223 

 224 

The two non-structural proteins (NSs, NSm) may play a role in viral pathogenesis (Eifan et 225 

al., 2013; Hart et al., 2009).  Experimental trials of live virus vaccines with the viral NSs and NSm 226 

protein genes deleted have demonstrated the efficacy and safety of such vaccines (Kraatz et al., 227 

2015). A crucial advantage of knockout mutants like this includes the ability to develop tests against 228 

the missing proteins to differentiate infected from vaccinated animals, an important issue in 229 

international trade considerations. These vaccines have however not been taken through to full 230 

commercialisation.  231 

 232 

The main other control method that has been advocated, apart from vaccinating before first 233 

mating, has been the moving of mating of sheep flocks and cattle herds to later in the autumn when 234 

midge numbers and virus circulation are lower. This should be effective in limiting reproductive 235 

effects in sheep flocks and cattle herds but is only practical in production systems that practice 236 

block matings (Helmer et al., 2013; Dominguez et al., 2014; Luttikholt et al., 2014; Poskin et al., 237 

2016). 238 

 239 



Economic impact of SBV  240 

The impact of the initial SBV outbreak on the overall European economy was low (EFSA, 241 

2012a). The cost to individual farm businesses shows great variation depending on whether their 242 

mating practices result in the at-risk gestation period overlapping with peak midge season. Several 243 

recent studies have considered the overall economic impacts of the virus (Dominguez et al., 2014; 244 

Martinelle et al., 2014; Veldhuis et al., 2014; Barrett et al., 2015) and there have been several 245 

economic models produced from this data (Alarcon et al., 2014; Raboisson et al., 2014). The main 246 

impacts of the virus on farm economics can be summed up as milk production losses, reproductive 247 

losses due to abortion and fetal deformity, the cost of purchase of replacement stock to compensate 248 

for reproductive losses, replacement animals not sold, as well as veterinary costs and movement 249 

restrictions (Alarcon et al., 2014).   250 

 251 

One factor the current models have not included is the impact of early reproductive losses as 252 

firm data is still not available on this. The inclusion of these losses would of course add to the 253 

economic impact of the virus for producers. These impacts need to be considered in the light of the 254 

very high variation in impact on individual farms, ranging from negligible to over 50% of losses of 255 

new-born animals (Helmer et al., 2013). It also needs to be considered in the light of the range of 256 

production systems for ruminants in Europe which vary from high genetic value, intensively 257 

managed, indoor housed year round reproduction dairy herds to extensively grazed, low stocking 258 

density, block mated in autumn, sheep flocks. 259 

 260 

One of the main economic impacts of the initial SBV outbreak was the loss of export 261 

markets for bovine genetics (semen, embryos and breeding stock) due to the introduction of trade 262 

barriers from countries free of SBV (60% of countries trading with Europe imposed restrictions). A 263 

decline of 10-20% in trade was observed in addition to the value of pure-bred breeding animal 264 

exports dropping by 20% from 2011 to 2012 (EFSA, 2014). The remaining outcome of economic 265 



significance has been the finding that potentially infectious virus is shed intermittently in semen for 266 

up to 3 months after initial infection in a small number of bulls (Hoffmann et al., 2012, 2013; 267 

Ponsart et al., 2014; Schulz et al., 2014; Van Der Poel et al., 2014). This has not been reported for 268 

rams or bucks, however only small numbers of sheep and goats have been examined compared with 269 

cattle. Sexual transmission of the virus has not been reported, however given the importance of 270 

artificial insemination in cattle breeding in developed countries the risk of virus introduction has 271 

resulted in trade bans or testing requirements on semen or embryos from SBV-affected areas 272 

(Hoffmann et al., 2012).  273 

 274 

In the light of the concerns of producers over vaccination cost and benefit and the current 275 

risk and uncertainty over future SBV outbreaks it is worth considering recent data on the economic 276 

impacts of the virus and the cost-benefits of vaccination as a control measure. Vaccination 277 

experience with bluetongue virus has shown that a high rate of vaccination can significantly reduce 278 

virus circulation and reduce the economic impact of the loss of animals (Lazutka et al., 2015). A 279 

brief summary of the range of the costs of the disease versus the cost of vaccination for the main 280 

production types in Europe is presented in Table 1 below. 281 

 282 

  These figures would indicate that vaccination would be warranted in most beef cattle herds 283 

and dairy sheep flocks, however in other production systems only those herds in “high risk” 284 

categories, such as a herd of low seropositivity, management systems where gestation and pasture 285 

availability overlaps with peak midge season (Baylis et al., 2010; Alarcon et al., 2014) would 286 

accrue an overall benefit from vaccination against SBV.   287 

 288 

Potential for SBV re-emergence 289 

Other viruses that infect ruminants, such as BTV in Europe, and related Bunyaviridae in 290 

Japan and Australia, have shown a pattern of re-emergence when certain conditions are met. It is 291 



therefore anticipated that SBV might follow the same pattern of re-emergence. In Japan there are 292 

epidemics of Aino virus every 3-6 years (Tsuda et al., 2004; Kono et al., 2008) as naïve animals 293 

become available. For Akabane virus in Australia there are predictable annual transmission patterns 294 

and outbreaks every 10-15 years, due to expansion or temporary contraction of the vector or 295 

movement of naïve animals. 296 

 297 

Bluetongue virus serotype 8 (BTV-8), which shares the same vector species as SBV, 298 

recently re-emerged in Europe after a period of absence of clinical disease of several years and 299 

declining seropositivity in the resident ruminant population (Sailleau et al., 2015; Bréard et al., 300 

2016). Loss of SBV immunity has already been seen in Germany with only about 20% of newborn 301 

animals having antibodies (Wernike et al., 2015a). In animals born since the initial outbreak, the 302 

numbers seroconverting have been much lower, 58–65.7% in adult animals and as low as 20.6% in 303 

heifers (Meroc et al., 2015; Wernike et al., 2015b), resulting in a drop of seropositivity (and 304 

presumably immunity). In the UK and Ireland no seroconversions were detected in 2014–15 305 

indicating a presumed absence of the disease there in those years (Collins et al., 2016a; Stokes et 306 

al., 2016).  307 

The virus has continued to circulate at a low level in continental Europe with detection in 308 

Germany (Wernike et al., 2015a) and Belgium (Delooz et al., 2016). Evidence of increased 309 

circulation has recently been seen in the Netherlands with outbreaks of diarrhoea in cattle linked to 310 

SBV reported (Promed Mail 2016).  Similarly, virus re-circulation has been evident in the UK in 311 

2016 with a number of reports of clinical cases and seroconversion (Unknown, 2016). It is possible 312 

that large scale resurgence could occur when a combination of the number of naïve replacement 313 

stock reaches a critical level together with favourable conditions for the vectors.  314 

 315 

It has also been proposed that local wild ruminant populations may be a reservoir for 316 

arboviruses as BTV virus was detected in red deer in Spain, while livestock was disease free (Ruio-317 



Fons et al., 2014). Similarly, SBV virus has also been found in roe deer (Diaz et al., 2015), the 318 

European bison (Krzysiak et al., 2016) and other species (reviewed in Tarlinton et al., 2013) raising 319 

the prospect of a wild-life SBV reservoir in Europe.  320 

 321 

SBV is not notifiable at the European level, however several individual countries have made 322 

it notifiable (including Germany, France, the Netherlands and Ireland) and hence have maintained 323 

active monitoring programmes. Using milk yield to monitor disease state has been suggested as 324 

syndromic surveillance for several diseases that affect ruminants (Madouasse et al., 2013,2014). In 325 

combination with testing milk for virus-specific antibodies, this could help identify areas where 326 

infection is occurring (Veldhuis et al., 2016). 327 

 328 

In both Australia and Japan arbovirus monitoring programmes of sentinel animals and 329 

midge trapping and testing are in place as early warning systems (Kirkland, 2004; Geoghegan et al., 330 

2014; Kato et al., 2015) and we, as well as others (Regge, 2016) would suggest that such a system 331 

in Europe would be warranted. In Ireland and France, which have instituted surveillance using 332 

Culicoides monitoring and sentinel herds or reporting by sentinel veterinarians this approach has 333 

been successful in detecting circulating virus and new cases in the recent re-emergence (Collins et 334 

al., 2016b, Gache et al., 2017).  335 

 336 

In Japan, sentinel herds are employed in the southernmost islands where the outbreaks are 337 

more likely to begin due to the warmer climate. Several vaccines are available and are deployed 338 

pro-actively if circulation is detected (Kurogi et al. 1979, Kono et al 2008; Kim et al. 2011, Kato et 339 

al., 2015). In Australia, even though there is no currently registered vaccine, the information gained 340 

from the early monitoring and warning systems allows the farmers to make decisions about moving 341 

their herds or delaying mating to avoid the teratogenic consequences of infection (reviewed in 342 

Kirkland, 2015). 343 



 344 

Such a programme Europe-wide would alert livestock holders of the potential for SBV 345 

disease impacts in advance of the main seasonal ruminant breeding activities in summer and autumn 346 

giving producers the opportunity to assess whether vaccination or delay of mating would be 347 

necessary for their herds and flocks. Ideally, improved data on midge abundance, virus circulation 348 

in midges and modelling of long term climate and land use variables that affect midge abundance 349 

would be necessary for advanced warning of the risk of disease, however without a substantial body 350 

of data from long term sentinel monitoring programmes on a continent wide basis such as that 351 

available in Australia (Bishop et al., 2000; Eagles et al., 2014) this cannot happen.  352 

 353 

In addition, the detection of numerous different Simbu-group viruses in the Mediterranean 354 

and Africa has made it clear that there are numerous viruses circulating in the regions where SBV is 355 

likely to have come from. This, combined with the well-studied propensity of this group of viruses 356 

to swap genetic segments (antigenic shift), makes it quite likely that there will be outbreaks of 357 

viruses with similar pathogenesis and epidemiology to SBV in Europe in the near future, making 358 

preparation of diagnostic and vaccine platforms transferrable across this virus group a priority.  359 

 360 

Conclusions 361 

While we now know much more about SBV than when it was initially reported, there are 362 

still a number of long-term uncertainties about the impact of the virus on the European ruminant 363 

herd. Chief among these is the long-term endemic stability of the viruses. From the currently 364 

available data, it is clear that the initial epidemic front of the virus in 2011–12 was the worst case 365 

scenario, with immunologically-naïve animals being exposed for the first time to the virus resulting 366 

in almost 100% seroconversion in some regions. Since 2013–14, there has been continuing low 367 

level circulation of SBV in Western Europe and overall herd immunity (variable to begin with) has 368 



dropped. This unfortunately increases the likelihood of repeated epidemic outbreaks, particularly in 369 

years when high midge numbers and susceptible ruminants coincide. 370 
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Table 1 

 Production 

System 

Cost range  of 

disease £/1000 

head 

Cost benefit of 

vaccination 

 

Likelihood 

of use 

Dairy cattle 8200 to 51400  -5720 to 37480 High risk 

only 

Beef cattle 18000 to 30650 4080 to 16730 Yes 

Lamb production 4750  to 20850  -9170 to 7000 High risk 

only 

Dairy Sheep 10340 to 29,810  3580 to 15890 Yes 

Cost of the disease per 1000 animal vs. cost benefit of vaccination (adapted from Raboisson et al. 896 

(2014). Costs are shown for high risk and low risk cases and exclude labour costs. Vaccination cost 897 

assumed at UK £13.92 per head (£13920 per herd) (Price as of Dec 2015“farmacy”website 1) 898 

(£1UK= approximately US $1.23, €1.16 as of 18th Nov 2016) 899 

                                                 
1 “Farmacy” website: http://www.farmacy.co.uk/categories/575-schmallenberg (accessed 22nd March 2017)  

http://www.farmacy.co.uk/categories/575-schmallenberg

