338 research outputs found

    Re-Examining an Air Mass-Based Approach to Detecting Structural Climate Change, 1948-2011

    Get PDF
    Air mass-based approaches to observing changes in climate can have considerable value beyond simple trends of temperature and moisture, providing more thorough understanding of structural climate patterns. Few methodologies have adequately characterized recent air mass modification, however. This research seeks to update and improve upon the methods of a prior study, providing new data from 1948-2011, as well as more rigorous statistical analyses. Air mass types were created, and monthly averages of temperature, dewpoint, and relative frequency were calculated for each of the air masses in all four seasons; then the time series were submitted to regression analysis. The results of this re-analysis show an increase in warm air masses at the expense of cool air masses coinciding with the patterns of surface temperature and air mass warming seen in other recent studies. Some changes in the behavior of these air masses were noted, however, along with new variations in the character of others. These air mass trends have conceivable ties to prior general circulation patterns. Assuming that previous patterns have continued a possible increase in troughs, with a simultaneous decrease in ridges, in the western United States may be occurring, while new patterns of air mass source region modification and air mass mixing could also exist. Systematic warming of air masses also has conceivable, though rather modest relationships with large scale circulation patterns, including positive phases of the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO), as well as contraction of the circumpolar vortex

    Characteristics of Deforestation in the Democratic People’s Republic of Korea (North Korea) between the 1980s and 2000s

    Get PDF
    There has been a significant lack of land cover change studies in relation to deforestation in the Democratic People’s Republic of Korea (North Korea). The purpose of this study is to characterise deforestation in North Korea through land cover change trajectory and spatial analysis. We used three 30-m gridded land cover data sets for North Korea representing the conditions of the late 1980s, 1990s, and 2000s, respectively, as well as a digital elevation model. We examined the land cover trajectories during the two decades, i.e. which land cover became which at the pixel level. In addition, we calculated topographic characteristics of deforested pixels. Major findings from the study are summarised as follows: (1) net forest loss in North Korea slowed since the 1990s, whereas land cover changes were active; (2) as a result of deforestation, forest land cover became mostly agricultural and grassland; (3) expansion of agricultural land cover continued during the time; and (4) elevation and slope of deforested areas decreased slightly in the latter decade. The key contribution of the study is that it has demonstrated which land cover became which at the 30-m pixel level, complementing existing studies that examined overall forest stock in North Korea

    Rings Reconcile Genotypic and Phenotypic Evolution within the Proteobacteria.

    Get PDF
    Although prokaryotes are usually classified using molecular phylogenies instead of phenotypes after the advent of gene sequencing, neither of these methods is satisfactory because the phenotypes cannot explain the molecular trees and the trees do not fit the phenotypes. This scientific crisis still exists and the profound disconnection between these two pillars of evolutionary biology--genotypes and phenotypes--grows larger. We use rings and a genomic form of goods thinking to resolve this conundrum (McInerney JO, Cummins C, Haggerty L. 2011. Goods thinking vs. tree thinking. Mobile Genet Elements. 1:304-308; Nelson-Sathi S, et al. 2015. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517:77-80). The Proteobacteria is the most speciose prokaryotic phylum known. It is an ideal phylogenetic model for reconstructing Earth's evolutionary history. It contains diverse free living, pathogenic, photosynthetic, sulfur metabolizing, and symbiotic species. Due to its large number of species (Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: the unseen majority. Proc Nat Acad Sci U S A. 95:6578-6583) it was initially expected to provide strong phylogenetic support for a proteobacterial tree of life. But despite its many species, sequence-based tree analyses are unable to resolve its topology. Here we develop new rooted ring analyses and study proteobacterial evolution. Using protein family data and new genome-based outgroup rooting procedures, we reconstruct the complex evolutionary history of the proteobacterial rings (combinations of tree-like divergences and endosymbiotic-like convergences). We identify and map the origins of major gene flows within the rooted proteobacterial rings (P < 3.6 × 10(-6)) and find that the evolution of the "Alpha-," "Beta-," and "Gammaproteobacteria" is represented by a unique set of rings. Using new techniques presented here we also root these rings using outgroups. We also map the independent flows of genes involved in DNA-, RNA-, ATP-, and membrane- related processes within the Proteobacteria and thereby demonstrate that these large gene flows are consistent with endosymbioses (P < 3.6 × 10(-9)). Our analyses illustrate what it means to find that a gene is present, or absent, within a gene flow, and thereby clarify the origin of the apparent conflicts between genotypes and phenotypes. Here we identify the gene flows that introduced photosynthesis into the Alpha-, Beta-, and Gammaproteobacteria from the common ancestor of the Actinobacteria and the Firmicutes. Our results also explain why rooted rings, unlike trees, are consistent with the observed genotypic and phenotypic relationships observed among the various proteobacterial classes. We find that ring phylogenies can explain the genotypes and the phenotypes of biological processes within large and complex groups like the Proteobacteria

    Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans

    Get PDF
    The beneficial effects of polyphenol compounds in fruits and vegetables are mainly extrapolated from in vitro studies or short-term dietary supplementation studies. Due to cost and duration, relatively little is known about whether dietary polyphenols are beneficial in whole animals, particularly with respect to aging. To address this question, we examined the effects of blueberry polyphenols on lifespan and aging of the nematode, Caenorhabditis elegans, a useful organism for such a study. We report that a complex mixture of blue-berry polyphenols increased lifespan and slowed aging-related declines in C. elegans. We also found that these benefits did not just reflect antioxidant activity in these compounds. For instance, blueberry treatment increased survival during acute heat stress, but was not protective against acute oxidative stress. The blueberry extract consists of three major fractions that all contain antioxidant activity. However, only one fraction, enriched in proanthocyanidin compounds, increased C. elegans lifespan and thermotolerance. To further determine how polyphenols prolonged C. elegans lifespan, we analyzed the genetic requirements for these effects. Prolonged lifespan from this treatment required the presence of a CaMKII pathway that mediates osmotic stress resistance, though not other pathways that affect stress resistance and longevity. In conclusion, polyphenolic compounds in blueberries had robust and reproducible benefits during aging that were separable from antioxidant effects

    Efficient intra- and inter-night linking of asteroid detections using kd-trees

    Get PDF
    The Panoramic Survey Telescope And Rapid Response System (Pan-STARRS) under development at the University of Hawaii's Institute for Astronomy is creating the first fully automated end-to-end Moving Object Processing System (MOPS) in the world. It will be capable of identifying detections of moving objects in our solar system and linking those detections within and between nights, attributing those detections to known objects, calculating initial and differentially-corrected orbits for linked detections, precovering detections when they exist, and orbit identification. Here we describe new kd-tree and variable-tree algorithms that allow fast, efficient, scalable linking of intra and inter-night detections. Using a pseudo-realistic simulation of the Pan-STARRS survey strategy incorporating weather, astrometric accuracy and false detections we have achieved nearly 100% efficiency and accuracy for intra-night linking and nearly 100% efficiency for inter-night linking within a lunation. At realistic sky-plane densities for both real and false detections the intra-night linking of detections into `tracks' currently has an accuracy of 0.3%. Successful tests of the MOPS on real source detections from the Spacewatch asteroid survey indicate that the MOPS is capable of identifying asteroids in real data.Comment: Accepted to Icaru

    Titan airglow spectra from Cassini Ultraviolet Imaging Spectrograph (UVIS): EUV analysis

    Full text link
    peer reviewedaudience: researcher, professional, studentWe present the first UV airglow observations of Titan's atmosphere by the Ultraviolet Imaging Spectrograph (UVIS) on Cassini. Using one spectral channel in the EUV from 561-1182 Å and one in the FUV from 1115-1913 Å, UVIS observed the disk on 13 December, 2004 at low solar activity. The EUV spectrum consists of three band systems of N[SUB]2[/SUB] (b [SUP]1[/SUP]∏[SUB]u[/SUB], b' [SUP]1[/SUP]∑[SUB]u[/SUB] [SUP]+[/SUP], c[SUB]4[/SUB]' [SUP]1[/SUP]∑[SUB]u[/SUB] [SUP]+[/SUP] -> X [SUP]1[/SUP]∑[SUB]g[/SUB] [SUP]+[/SUP]), while the FUV spectrum consists of one (a [SUP]1[/SUP]∏[SUB]g[/SUB] -> X [SUP]1[/SUP]∑[SUB]g[/SUB] [SUP]+[/SUP]). Both the EUV and FUV spectra contain many N I and N II multiplets that are produced primarily by photodissociative ionization. Spectral intensities of the N[SUB]2[/SUB] c[SUB]4[/SUB]' [SUP]1[/SUP]∑[SUB]u[/SUB] [SUP]+[/SUP](v' = 0) -> X [SUP]1[/SUP]∑[SUB]g[/SUB] [SUP]+[/SUP](v'' = 0-2) progression from 950-1010 Å are resolved for the first time. The UVIS observations reveal that the c[SUB]4[/SUB]' [SUP]1[/SUP]∑[SUB]u[/SUB] [SUP]+[/SUP](0) -> X [SUP]1[/SUP]∑[SUB]g[/SUB] [SUP]+[/SUP] (0) vibrational band near 958 Å is weak and undetectable, and that N I multiplets near 953.2 and 964.5 Å are present instead. Magnetospheric particle excitation may be weak or sporadic, since the nightside EUV spectrum on this orbit shows no observable nitrogen emission features and only H Ly-β

    WISE/NEOWISE observations of Active Bodies in the Main Belt

    Get PDF
    We report results based on mid-infrared photometry of 5 active main belt objects (AMBOs) detected by the Wide-field Infrared Survey Explorer (WISE) spacecraft. Four of these bodies, P/2010 R2 (La Sagra), 133P/Elst-Pizarro, (596) Scheila, and 176P/LINEAR, showed no signs of activity at the time of the observations, allowing the WISE detections to place firm constraints on their diameters and albedos. Geometric albedos were in the range of a few percent, and on the order of other measured comet nuclei. P/2010 A2 was observed on April 2-3, 2010, three months after its peak activity. Photometry of the coma at 12 and 22 {\mu}m combined with ground-based visible-wavelength measurements provides constraints on the dust particle mass distribution (PMD), dlogn/dlogm, yielding power-law slope values of {\alpha} = -0.5 +/- 0.1. This PMD is considerably more shallow than that found for other comets, in particular inbound particle fluence during the Stardust encounter of comet 81P/Wild 2. It is similar to the PMD seen for 9P/Tempel 1 in the immediate aftermath of the Deep Impact experiment. Upper limits for CO2 & CO production are also provided for each AMBO and compared with revised production numbers for WISE observations of 103P/Hartley 2.Comment: 32 Pages, including 5 Figure

    The queer commons: introduction

    Get PDF
    Ideas and practices of “the commons” have been urgently explored in recent years in attempts to forge alternatives to global capitalism and its privatizing enclosures of social life. Contemporary queer energies have been directed to commons-forming initiatives that sustain queer lives otherwise marginalized by heteronormative society and mainstream LGBTQ politics: from activist provision of social services to the maintenance of networks around queer art, protest, public sex, and bar cultures. However, such instances of queer political action and imagination have rarely been recognized within extant discourses of the commons. This introduction sets out differing genealogies of thought within scholarship on the commons and, building on the work of the performance studies scholar José Esteban Muñoz, it asks how, if at all, it is possible to theorize a queer commons
    corecore