72 research outputs found

    Microsomal triglyceride transfer protein expression in adipocytes: A new component in fat metabolism

    Get PDF
    AbstractMicrosomal triglyceride transfer protein (MTP) is a carrier of triglyceride essential for the assembly of apolipoprotein (apo)B-containing lipoproteins by the liver and the small intestine. Its role in triglyceride transfer in tissues that do not secrete lipoproteins has not been explored. In particular, MTP would seem to be a candidate for a role in triglyceride metabolism within the adipocyte. To test this hypothesis, we probed adipocytes for the presence of MTP. Immunohistochemical and biochemical studies demonstrate MTP in adipocytes from brown and white fat depots of mice and human, as well as in 3T3-L1 cells. Confocal microscopy revealed MTP throughout 3T3 cells; however, MTP fluorescence was prominent in juxtanuclear areas. In differentiated 3T3 cells MTP fluorescence was very striking around lipid droplets. In vitro lipid transfer assays demonstrated the presence of triglyceride transfer activity within microsomal fractions isolated from rat adipose tissue. In addition, quantitative rtPCR studies showed that MTP expression in mouse white fat depots was approximately 1% of MTP expression in mouse liver. MTP mRNA in differentiated 3T3 cells was approximately 13% of liver expression. Our results provide unequivocal evidence for the presence of MTP in adipocytes and present new possibilities for defining the mechanisms by which triglyceride is stored and/or hydrolyzed and mobilized

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    A connectome and analysis of the adult Drosophila central brain.

    Get PDF
    The neural circuits responsible for animal behavior remain largely unknown. We summarize new methods and present the circuitry of a large fraction of the brain of the fruit fly Drosophila melanogaster. Improved methods include new procedures to prepare, image, align, segment, find synapses in, and proofread such large data sets. We define cell types, refine computational compartments, and provide an exhaustive atlas of cell examples and types, many of them novel. We provide detailed circuits consisting of neurons and their chemical synapses for most of the central brain. We make the data public and simplify access, reducing the effort needed to answer circuit questions, and provide procedures linking the neurons defined by our analysis with genetic reagents. Biologically, we examine distributions of connection strengths, neural motifs on different scales, electrical consequences of compartmentalization, and evidence that maximizing packing density is an important criterion in the evolution of the fly's brain

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Identification of a Novel Transcript and Regulatory Mechanism for Microsomal Triglyceride Transfer Protein.

    No full text
    Microsomal triglyceride transfer protein (MTP) is essential for the assembly of triglyceride-rich apolipoprotein B-containing lipoproteins. Previous studies in our laboratory identified a novel splice variant of MTP in mice that we named MTP-B. MTP-B has a unique first exon (1B) located 2.7 kB upstream of the first exon (1A) for canonical MTP (MTP-A). The two mature isoforms, though nearly identical in sequence and function, have different tissue expression patterns. In this study we report the identification of a second MTP splice variant (MTP-C), which contains both exons 1B and 1A. MTP-C is expressed in all the tissues we tested. In cells transfected with MTP-C, protein expression was less than 15% of that found when the cells were transfected with MTP-A or MTP-B. In silico analysis of the 5'-UTR of MTP-C revealed seven ATGs upstream of the start site for MTP-A, which is the only viable start site in frame with the main coding sequence. One of those ATGs was located in the 5'-UTR for MTP-A. We generated reporter constructs in which the 5'-UTRs of MTP-A or MTP-C were inserted between an SV40 promoter and the coding sequence of the luciferase gene and transfected these constructs into HEK 293 cells. Luciferase activity was significantly reduced by the MTP-C 5'-UTR, but not by the MTP-A 5'-UTR. We conclude that alternative splicing plays a key role in regulating MTP expression by introducing unique 5'-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP levels and activity

    Late Pleistocene Salamander (Caudata; Plethodontidae) from Santa Rosa Island, Northern Channel Islands, California

    No full text
    We present the first record of a late Pleistocene salamander, Batrachoseps (Plethodontidae; Bolitoglossini) from the Northern Channel Islands. Fossils were recovered in sediments by using 700 |Jim mesh wet sieving. Ocean currents could have transported any or all of the known seven families of salamanders presently inhabiting coastal USA to the islands. We suggest that only the Plethodontini and Bolitoglossini were likely to successfully colonize the Pleistocene-age coalesced island, Santarosae, due to their lack of an aquatic larval stage. The recovery of Batrachoseps from Carrington Point implies a moist, organic understory, but it does not dictate a particular habitat reconstruction

    Triglyceride transfer activity.

    No full text
    <p>CHO cells were transfected with mouse MTP-A, -B, and -C. Three days post transfection the cells were lysed and aliquots of the lysate taken for the fluorescence based triglyceride transfer assay (Chylos, Inc.). The assays were run for varying periods, and the results are expressed as the percent of total triglyceride transferred/10 μg cell protein. Data are expressed as mean ± s.d. (n = 3/group).</p

    Effect of 5’-UTR on expression of MTP-A.

    No full text
    <p>CHO cells were transfected with MTP-A open reading frame (CDS), MTP-A ORF with artificial Kozak sequence (Kozak + CDS), MTP-A ORF with full 5’-UTR (5’-UTR + CDS), and MTP-A ORF with full 5’-UTR in which upstream ATG was mutated to ATA (5’-UTR(m) + CDS). Cells were lysed 72 h post transfection, and equal amounts of cell lysate protein were separated by SDS-PAGE. MTP protein levels were assessed by immunoblotting and quantitated using a BioRad GS700 Imaging Densitometer equipped with Quantity One software.</p
    corecore