56 research outputs found

    Calculating partial expected value of perfect information via Monte Carlo sampling algorithms

    Get PDF
    Partial expected value of perfect information (EVPI) calculations can quantify the value of learning about particular subsets of uncertain parameters in decision models. Published case studies have used different computational approaches. This article examines the computation of partial EVPI estimates via Monte Carlo sampling algorithms. The mathematical definition shows 2 nested expectations, which must be evaluated separately because of the need to compute a maximum between them. A generalized Monte Carlo sampling algorithm uses nested simulation with an outer loop to sample parameters of interest and, conditional upon these, an inner loop to sample remaining uncertain parameters. Alternative computation methods and shortcut algorithms are discussed and mathematical conditions for their use considered. Maxima of Monte Carlo estimates of expectations are biased upward, and the authors show that the use of small samples results in biased EVPI estimates. Three case studies illustrate 1) the bias due to maximization and also the inaccuracy of shortcut algorithms 2) when correlated variables are present and 3) when there is nonlinearity in net benefit functions. If relatively small correlation or nonlinearity is present, then the shortcut algorithm can be substantially inaccurate. Empirical investigation of the numbers of Monte Carlo samples suggests that fewer samples on the outer level and more on the inner level could be efficient and that relatively small numbers of samples can sometimes be used. Several remaining areas for methodological development are set out. A wider application of partial EVPI is recommended both for greater understanding of decision uncertainty and for analyzing research priorities

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Effectiveness of Biodiversity Surrogates for Conservation Planning: Different Measures of Effectiveness Generate a Kaleidoscope of Variation

    Get PDF
    Conservation planners represent many aspects of biodiversity by using surrogates with spatial distributions readily observed or quantified, but tests of their effectiveness have produced varied and conflicting results. We identified four factors likely to have a strong influence on the apparent effectiveness of surrogates: (1) the choice of surrogate; (2) differences among study regions, which might be large and unquantified (3) the test method, that is, how effectiveness is quantified, and (4) the test features that the surrogates are intended to represent. Analysis of an unusually rich dataset enabled us, for the first time, to disentangle these factors and to compare their individual and interacting influences. Using two data-rich regions, we estimated effectiveness using five alternative methods: two forms of incidental representation, two forms of species accumulation index and irreplaceability correlation, to assess the performance of ‘forest ecosystems’ and ‘environmental units’ as surrogates for six groups of threatened species—the test features—mammals, birds, reptiles, frogs, plants and all of these combined. Four methods tested the effectiveness of the surrogates by selecting areas for conservation of the surrogates then estimating how effective those areas were at representing test features. One method measured the spatial match between conservation priorities for surrogates and test features. For methods that selected conservation areas, we measured effectiveness using two analytical approaches: (1) when representation targets for the surrogates were achieved (incidental representation), or (2) progressively as areas were selected (species accumulation index). We estimated the spatial correlation of conservation priorities using an index known as summed irreplaceability. In general, the effectiveness of surrogates for our taxa (mostly threatened species) was low, although environmental units tended to be more effective than forest ecosystems. The surrogates were most effective for plants and mammals and least effective for frogs and reptiles. The five testing methods differed in their rankings of effectiveness of the two surrogates in relation to different groups of test features. There were differences between study areas in terms of the effectiveness of surrogates for different test feature groups. Overall, the effectiveness of the surrogates was sensitive to all four factors. This indicates the need for caution in generalizing surrogacy tests

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Evaluation of Fermi read-out of the Atlas Tilecal prototype

    Get PDF
    Prototypes of the FERMI system have been used to read out a prototype of the ATLAS hadron calorimeter in a beam test at the CERN SPS. The FERMI read-out system, using a compressor and a sampling ADC, is compared to a standard charge integrating read-out by measuring the energy resolution of the calorimeter separately with the two systems on the same events.http://www.sciencedirect.com/science/article/B6TJM-3SYVH5K-41/1/c7deb04cd1c94e28ecafdeda8aea0d1
    corecore