546 research outputs found

    Complex Langevin Equation and the Many-Fermion Problem

    Get PDF
    We study the utility of a complex Langevin (CL) equation as an alternative for the Monte Carlo (MC) procedure in the evaluation of expectation values occurring in fermionic many-body problems. We find that a CL approach is natural in cases where non-positive definite probability measures occur, and remains accurate even when the corresponding MC calculation develops a severe ``sign problem''. While the convergence of CL averages cannot be guaranteed in principle, we show how convergent results can be obtained in three examples ranging from simple one-dimensional integrals over quantum mechanical models to a schematic shell model path integral.Comment: 19 pages, 10 PS figures embedded in tex

    The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke

    Get PDF
    The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided

    High-energy x-ray detection of G359.89–0.08 (SGR A–E): magnetic flux tube emission powered by cosmic rays?

    Get PDF
    We report the first detection of high-energy X-ray (E>10 keV) emission from the Galactic Center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to ~50 keV during a NuSTAR Galactic Center monitoring campaign. The featureless power-law spectrum with a photon index of ~2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is ~ 2.0e-12 erg/cm^2/s, corresponding to an unabsorbed X-ray luminosity of ~2.6e34 erg/s assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to ~100 kyr) with low surface brightness and radii up to ~30 pc or molecular clouds (MCs) illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.Comment: 6 pages, 2 figures, accepted for publication in Ap

    Digital Signal Processing

    Get PDF
    Contains a research summary and reports on fifteen research projects.National Science Foundation FellowshipJoint Services Electronics Program (Contract DAAG29-78-C-0020)National Science Foundation (Grant ENG76-24117)U.S. Navy - Office of Naval Research (Contract N00014-75-C-0951)National Science Foundation (Grant ENG76-24117)Schlumberger-Doll Research Center FellowshipHertz Foundation FellowshipNational Aeronautics and Space Administration (Grant NSG-5157)U.S. Navy - Office of Naval Research (Contract N00014-77-C-0196

    Higher Postoperative Mortality and Inferior Survival After Right-Sided Liver Resection for Perihilar Cholangiocarcinoma:Left-Sided Resection is Preferred When Possible

    Get PDF
    BACKGROUND: A right- or left-sided liver resection can be considered in about half of patients with perihilar cholangiocarcinoma (pCCA), depending on tumor location and vascular involvement. This study compared postoperative mortality and long-term survival of right- versus left-sided liver resections for pCCA.METHODS: Patients who underwent major liver resection for pCCA at 25 Western centers were stratified according to the type of hepatectomy-left, extended left, right, and extended right. The primary outcomes were 90-day mortality and overall survival (OS).RESULTS: Between 2000 and 2022, 1701 patients underwent major liver resection for pCCA. The 90-day mortality was 9% after left-sided and 18% after right-sided liver resection (p &lt; 0.001). The 90-day mortality rates were 8% (44/540) after left, 11% (29/276) after extended left, 17% (51/309) after right, and 19% (108/576) after extended right hepatectomy (p &lt; 0.001). Median OS was 30 months (95% confidence interval [CI] 27-34) after left and 23 months (95% CI 20-25) after right liver resection (p &lt; 0.001), and 33 months (95% CI 28-38), 27 months (95% CI 23-32), 25 months (95% CI 21-30), and 21 months (95% CI 18-24) after left, extended left, right, and extended right hepatectomy, respectively (p &lt; 0.001). A left-sided resection was an independent favorable prognostic factor for both 90-day mortality and OS compared with right-sided resection, with similar results after excluding 90-day fatalities.CONCLUSIONS: A left or extended left hepatectomy is associated with a lower 90-day mortality and superior OS compared with an (extended) right hepatectomy for pCCA. When both a left and right liver resection are feasible, a left-sided liver resection is preferred.</p

    The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    Get PDF
    The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Ly alpha forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap, bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameters pipeline, which has better determination of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from submitted version

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    corecore