10 research outputs found
Recommended from our members
AT(N) biomarker profiles and Alzheimer's disease symptomology in Down syndrome.
INTRODUCTION: Down syndrome (DS) is a genetic cause of early-onset Alzheimer's disease (AD). The National Institute on Aging-Alzheimer's Association AT(N) Research Framework is a staging model for AD biomarkers but has not been assessed in DS. METHOD: Data are from the Alzheimer's Biomarker Consortium-Down Syndrome. Positron emission tomography (PET) amyloid beta (AÎČ; 15 mCi of [11 C]Pittsburgh compound B) and tau (10 mCi of [18 F]AV-1451) were used to classify amyloid (A) -/+ and tau (T) +/-. Hippocampal volume classified neurodegeneration (N) -/+. The modified Cued Recall Test assessed episodic memory. RESULTS: Analyses included 162 adults with DS (aged M = 38.84 years, standard deviation = 8.41). Overall, 69.8% of participants were classified as A-/T-/(N)-, 11.1% were A+/T-/(N)-, 5.6% were A+/T+/(N)-, and 9.3% were A+/T+/(N)+. Participants deemed cognitively stable were most likely to be A-T-(N)- and A+T-(N)-. Tau PET (T+) most closely aligning with memory impairment and AD clinical status. DISCUSSION: Findings add to understanding of AT(N) biomarker profiles in DS. HIGHLIGHTS: Overall, 69.8% of adults with Down syndrome (DS) aged 25 to 61 years were classified as amyloid (A)-/tau (T)-/neurodegeneration (N)-, 11.1% were A+/T-/(N)-, 5.6% were A+/T+/(N)-, and 9.3% were A+/T+/(N)+. The AT(N) profiles were associated with clinical Alzheimer's disease (AD) status and with memory performance, with the presence of T+ aligned with AD clinical symptomology. Findings inform models for predicting the transition to the prodromal stage of AD in DS
Recommended from our members
Timing of Alzheimers Disease by Intellectual Disability Level in Down Syndrome.
BACKGROUND: Trisomy 21 causes Down syndrome (DS) and is a recognized cause of early-onset Alzheimers disease (AD). OBJECTIVE: The current study sought to determine if premorbid intellectual disability level (ID) was associated with variability in age-trajectories of AD biomarkers and cognitive impairments. General linear mixed models compared the age-trajectory of the AD biomarkers PET AÎČ and tau and cognitive decline across premorbid ID levels (mild, moderate, and severe/profound), in models controlling trisomy type, APOE status, biological sex, and site. METHODS: Analyses involved adults with DS from the Alzheimers Biomarkers Consortium-Down Syndrome. Participants completed measures of memory, mental status, and visuospatial ability. Premorbid ID level was based on IQ or mental age scores prior to dementia concerns. PET was acquired using [11C] PiB for AÎČ, and [18F] AV-1451 for tau. RESULTS: Cognitive data was available for 361 participants with a mean age of 45.22 (SDâ=â9.92) and PET biomarker data was available for 154 participants. There was not a significant effect of premorbid ID level by age on cognitive outcomes. There was not a significant effect of premorbid ID by age on PET AÎČ or on tau PET. There was not a significant difference in age at time of study visit of those with mild cognitive impairment-DS or dementia by premorbid ID level. CONCLUSION: Findings provide robust evidence of a similar time course in AD trajectory across premorbid ID levels, laying the groundwork for the inclusion of individuals with DS with a variety of IQ levels in clinical AD trials
Recommended from our members
Cognitive and functional performance and plasma biomarkers of early Alzheimer's disease in Down syndrome.
Publication status: PublishedFunder: National Institute on Aging; doi: http://dx.doi.org/10.13039/100000049Funder: National Institutes of Health ProgramsFunder: the Eunice Kennedy Shriver IntellectualFunder: DSâConnect (The Down Syndrome Registry)Funder: Department of Psychiatry in the University of CambridgeINTRODUCTION: People with Down syndrome (DS) have a 75% to 90% lifetime risk of Alzheimer's disease (AD). AD pathology begins a decade or more prior to onset of clinical AD dementia in people with DS. It is not clear if plasma biomarkers of AD pathology are correlated with early cognitive and functional impairments in DS, and if these biomarkers could be used to track the early stages of AD in DS or to inform inclusion criteria for clinical AD treatment trials. METHODS: This large cross-sectional cohort study investigated the associations between plasma biomarkers of amyloid beta (AÎČ)42/40, total tau, and neurofilament light chain (NfL) and cognitive (episodic memory, visual-motor integration, and visuospatial abilities) and functional (adaptive behavior) impairments in 260 adults with DS without dementia (aged 25-81 years). RESULTS: In general linear models lower plasma AÎČ42/40 was related to lower visuospatial ability, higher total tau was related to lower episodic memory, and higher NfL was related to lower visuospatial ability and lower episodic memory. DISCUSSION: Plasma biomarkers may have utility in tracking AD pathology associated with early stages of cognitive decline in adults with DS, although associations were modest. HIGHLIGHTS: Plasma Alzheimer's disease (AD) biomarkers correlate with cognition prior to dementia in Down syndrome.Lower plasma amyloid beta 42/40 was related to lower visuospatial abilities.Higher plasma total tau and neurofilament light chain were associated with lower cognitive performance.Plasma biomarkers show potential for tracking early stages of AD symptomology
Cognitive and functional performance and plasma biomarkers of early Alzheimer's disease in Down syndrome.
IntroductionPeople with Down syndrome (DS) have a 75% to 90% lifetime risk of Alzheimer's disease (AD). AD pathology begins a decade or more prior to onset of clinical AD dementia in people with DS. It is not clear if plasma biomarkers of AD pathology are correlated with early cognitive and functional impairments in DS, and if these biomarkers could be used to track the early stages of AD in DS or to inform inclusion criteria for clinical AD treatment trials.MethodsThis large cross-sectional cohort study investigated the associations between plasma biomarkers of amyloid beta (AÎČ)42/40, total tau, and neurofilament light chain (NfL) and cognitive (episodic memory, visual-motor integration, and visuospatial abilities) and functional (adaptive behavior) impairments in 260 adults with DS without dementia (aged 25-81 years).ResultsIn general linear models lower plasma AÎČ42/40 was related to lower visuospatial ability, higher total tau was related to lower episodic memory, and higher NfL was related to lower visuospatial ability and lower episodic memory.DiscussionPlasma biomarkers may have utility in tracking AD pathology associated with early stages of cognitive decline in adults with DS, although associations were modest.HighlightsPlasma Alzheimer's disease (AD) biomarkers correlate with cognition prior to dementia in Down syndrome.Lower plasma amyloid beta 42/40 was related to lower visuospatial abilities.Higher plasma total tau and neurofilament light chain were associated with lower cognitive performance.Plasma biomarkers show potential for tracking early stages of AD symptomology