861 research outputs found

    Development, Characterization and Cross-species Transferability of Expressed Sequence Tag-simple Sequence Repeat (EST-SSR) Markers Derived from Kelampayan Tree Transcriptome

    Get PDF
    Neolamarckia cadamba (or locally known as kelampayan) is an important fast growing plantation tree species that confers various advantages for timber industry as a strategy for reducing the logging pressure on natural forests for wood production to an acceptable level. Hence, attempts were made to develop a set of EST-SSR markers for kelampayan trees based on the EST sequences of kelampayan (NcdbEST) and further assessed the polymorphisms and transferability of the markers to other species. In this study, 155 (2.34%) out of 6,622 EST sequences which contain 232 SSRs were mined from NcdbEST. Of these, 97 ESTs were assigned with putative functions and gene ontology terms. Eighteen EST-SSR markers were developed according to the criteria, and further characterized and validated by using 50 individuals of kelampayan from two selected mother trees. The markers exhibited a considerable high level of polymorphism in kelampayan trees with an average of 4.17 and 4.11 alleles per locus, and PIC values of 0.465 and 0.537, respectively for mother trees T1 and T2. Parentage assignment analysis suggests a high probability for kelampayan trees to be predominantly outcrossed. The transferability rate was ranging from 16.7-94.4% among the five cross-genera species of kelampayan. The present study is the first report of the development of EST-SSR markers in kelampayan. These markers will be valuable genomic resources that could pave the way for exploiting the genotype data for comparative genome mapping, association genetics, population genetics studies and molecular breeding of kelampayan and other indigenous tropical tree species in future

    Scattering map for two black holes

    Get PDF
    We study the motion of light in the gravitational field of two Schwarzschild black holes, making the approximation that they are far apart, so that the motion of light rays in the neighborhood of one black hole can be considered to be the result of the action of each black hole separately. Using this approximation, the dynamics is reduced to a 2-dimensional map, which we study both numerically and analytically. The map is found to be chaotic, with a fractal basin boundary separating the possible outcomes of the orbits (escape or falling into one of the black holes). In the limit of large separation distances, the basin boundary becomes a self-similar Cantor set, and we find that the box-counting dimension decays slowly with the separation distance, following a logarithmic decay law.Comment: 20 pages, 5 figures, uses REVTE

    Innovative ligand-assisted synthesis of NIR-activated iron oxide for cancer theranostics

    Get PDF
    This work presents the development of a facile ligand-assisted hydrothermal reaction for the preparation of NIR-activated Fe3O4 nanostructures that can directly upgrade the iron oxide with MR contrast ability to be a MRI/photothermal theranostic agent

    Domain Growth and Finite-Size-Scaling in the Kinetic Ising Model

    Full text link
    This paper describes the application of finite-size scaling concepts to domain growth in systems with a non-conserved order parameter. A finite-size scaling ansatz for the time-dependent order parameter distribution function is proposed, and tested with extensive Monte-Carlo simulations of domain growth in the 2-D spin-flip kinetic Ising model. The scaling properties of the distribution functions serve to elucidate the configurational self-similarity that underlies the dynamic scaling picture. Moreover, it is demonstrated that the application of finite-size-scaling techniques facilitates the accurate determination of the bulk growth exponent even in the presence of strong finite-size effects, the scale and character of which are graphically exposed by the order parameter distribution function. In addition it is found that one commonly used measure of domain size--the scaled second moment of the magnetisation distribution--belies the full extent of these finite-size effects.Comment: 13 pages, Latex. Figures available on request. Rep #9401

    Search for the decay K+ to pi+ gamma gamma in the pi+ momentum region P>213 MeV/c

    Full text link
    We have searched for the K+ to pi+ gamma gamma decay in the kinematic region with pi+ momentum close to the end point. No events were observed, and the 90% confidence-level upper limit on the partial branching ratio was obtained, B(K+ to pi+ gamma gamma, P>213 MeV/c) < 8.3 x 10-9 under the assumption of chiral perturbation theory including next-to-leading order ``unitarity'' corrections. The same data were used to determine an upper limit on the K+ to pi+ gamma branching ratio of 2.3 x 10-9 at the 90% confidence level.Comment: 15 pages, 3 figures; no change in the results, accepted for publication in Physics Letters

    SARS-CoV-2 infection, clinical features and outcome of COVID-19 in United Kingdom nursing homes.

    Get PDF
    OBJECTIVES: To understand SARS-Co-V-2 infection and transmission in UK nursing homes in order to develop preventive strategies for protecting the frail elderly residents. METHODS: An outbreak investigation involving 394 residents and 70 staff, was carried out in 4 nursing homes affected by COVID-19 outbreaks in central London. Two point-prevalence surveys were performed one week apart where residents underwent SARS-CoV-2 testing and had relevant symptoms documented. Asymptomatic staff from three of the four homes were also offered SARS-CoV-2 testing. RESULTS: Overall, 26% (95% CI 22-31) of residents died over the two-month period. All-cause mortality increased by 203% (95% CI 70-336) compared with previous years. Systematic testing identified 40% (95% CI 35-46) of residents as positive for SARS-CoV-2, and of these 43% (95% CI 34-52) were asymptomatic and 18% (95% CI 11-24) had only atypical symptoms; 4% (95% CI -1 to 9) of asymptomatic staff also tested positive. CONCLUSIONS: The SARS-CoV-2 outbreak in four UK nursing homes was associated with very high infection and mortality rates. Many residents developed either atypical or had no discernible symptoms. A number of asymptomatic staff members also tested positive, suggesting a role for regular screening of both residents and staff in mitigating future outbreaks

    Accretion, Outflows, and Winds of Magnetized Stars

    Full text link
    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars are radiatively driven. In all of these cases, the magnetic field influences matter flow from the stars and determines many observational properties. In this chapter we review recent studies of accretion, outflows, and winds of magnetized stars with a focus on three main topics: (1) accretion onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and (3) winds from isolated massive magnetized stars. We show results obtained from global magnetohydrodynamic simulations and, in a number of cases compare global simulations with observations.Comment: 60 pages, 44 figure

    Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context

    Get PDF
    Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated o¡enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ‘compositional’ and ‘contextual’ explanations of cross-national di¡erences have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the e¡ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) di¡erences. Furthermore, crossnational variation in victimization rates is not only shaped by di¡erences in national context, but also by varying composition. More speci¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.

    Study of the B^0 Semileptonic Decay Spectrum at the Upsilon(4S) Resonance

    Full text link
    We have made a first measurement of the lepton momentum spectrum in a sample of events enriched in neutral B's through a partial reconstruction of B0 --> D*- l+ nu. This spectrum, measured with 2.38 fb**-1 of data collected at the Upsilon(4S) resonance by the CLEO II detector, is compared directly to the inclusive lepton spectrum from all Upsilon(4S) events in the same data set. These two spectra are consistent with having the same shape above 1.5 GeV/c. From the two spectra and two other CLEO measurements, we obtain the B0 and B+ semileptonic branching fractions, b0 and b+, their ratio, and the production ratio f+-/f00 of B+ and B0 pairs at the Upsilon(4S). We report b+/b0=0.950 (+0.117-0.080) +- 0.091, b0 = (10.78 +- 0.60 +- 0.69)%, and b+ = (10.25 +- 0.57 +- 0.65)%. b+/b0 is equivalent to the ratio of charged to neutral B lifetimes, tau+/tau0.Comment: 14 page, postscript file also available at http://w4.lns.cornell.edu/public/CLN
    corecore