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We study the motion of light in the gravitational field of two Schwarzschild black holes, making the
approximation that they are far apart, so that the motion of light rays in the neighborhood of one black hole can
be considered to be the result of the action of each black hole separately. Using this approximation, the
dynamics is reduced to a two-dimensional map, which we study both numerically and analytically. The map is
found to be chaotic, with a fractal basin boundary separating the possible outcomes of théesdaipe or
falling into one of the black holgsin the limit of large separation distances, the basin boundary becomes a
self-similar Cantor set, and we find that the box-counting dimension decays slowly with the separation dis-
tance, following a logarithmic decay law.

PACS numbes): 05.45.Df, 95.10.Fh, 04.70.Bw

[. INTRODUCTION two nonrotating black holes with extreme electric charge
(Q=M in relativistic unitg, whose gravitational pull is ex-

In this paper we study the motion of ligiiull geodesics  actly matched by their electrostatic repulsion, thereby allow-
in the gravitational field of two nonrotating Schwarzschild ing a static mass configuration. They have found that in this
black holes. In general relativity, solutions of the field equa-metric the motion of both light and massive particles is cha-
tions describing more than one purely gravitational sourcetic, with a fractal invariant set and a fractal basin boundary.
are necessarily nonstationary because gravity is always aHowever, it is very unlikely that the Majumdar-Papapetrou
tractive (we are not considering exotic mattethere is no  metric describes realistic astronomical objects, since there is
possibility of arbitrarily “pinning” sources as is done in no known realistic astrophysical process by which a black
Newtonian gravitation, because of the automatic selfhole with extreme charge could be formed. Even though the
consistency of the nonlinear Einstein’s equations. If we detwo black holes with extreme charge have proven to be a
mand that the two black holes be fixed in space, then theseful model, it is interesting to address the problem of two
solution includes a conical singularitya “strut”) lying on  uncharged black holes, even if using an idealized model.
the axis on which the two masses are locdted This sin-  This is what we do in this paper, for the motion of light and
gularity appears as a natural consequence of the field equather massless particles. Our model is admittedly highly ide-
tions, and it is necessary to keep the two masses from fallinglized, but nevertheless we think it keeps some of the basic
towards each other. However, this singularity would have tdeatures of the dynamics of the real system, besides being an
be made of very exotic matter, and this solution does nointeresting dynamical system by itself.
describe any realistic system in astrophysics. The real solu- In order to overcome the fact that there is no static solu-
tion to the relativistic two-body problem can have no conicaltion for the two-black-hole system, we consider the case
singularities, and it is necessarily nonstationary. The twavhen the two black holes are far apart, with a distance much
black holes will spiral around each other, emitting gravita-larger than their Schwarzschild radii. In this case, nonlinear
tional waves, which makes this problem even more difficult.effects in the field equations are expected to be small, and we
There is no exact solution for the relativistic two-body prob-can approximate the motion of test particles in the neighbor-
lem, and even a numerical solution has eluded the most powtood of one of the masses as being the result of the field of
erful computers. that mass alone and disregard the effect of the other black

In order to cope with this problem, Contopouldd and  hole as being negligible. Using this approximation, the mo-
Dettmanet al.[3] have used the Majumdar-Papapetrou solu-tion of test particles in the two-black-hole system is treated
tion [1] to study the dynamics of test particles in a space-as a combination of motions caused by isolated Schwarzs-
time with two black holedtest particles are particles with child black holes. Since the equations of motion for the
negligible mass and no internal degrees of freedofine  Schwarzschild geometry can be analytically integrated, our
Majumdar-Papapetrou metric used by Contopoulos describefynamical system is reduced to a map, which is much easier

to study than a system of ordinary differential equations.
This scattering map is built in Sec. Il for the simple case of
*Present address: College of Computer, Mathematical and Physiwo black holes with equal masses. In Sec. lll we show that
cal Sciences, University of Maryland, College Park, MD 20742-this map has a fractal basin boundary separating the possible
3511. Email address: amoura@glue.umd.edu outcomes of a light ray in the two-black-hole field, namely,
"Email address: letelier@ime.unicamp.br falling into either of the black holes or escaping towards the
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asymptotically plane infinity. The fractébox-counting di- 120 - - -
mension of this basin boundary is numerically calculated,
and the sensitivity to initial conditions implied by the fractal
nature of the boundary is thereby quantified. In Sec. IV we
use explicitly the condition of large separation between the
black holes. In this limit, the basin boundary becomes a self-
similar Cantor set, which allows us to obtain analytical re- _
sults on the fractal dimension of the basin boundary and itsS
dependence on the distance between the black holes. We fin
that the fractal dimension decays very slowlggarithmi-

cally) with distance. In Sec. V, we consider the case of two
black holes with unequal masses, in the limit of a large sepa-
ration; we find that the logarithmic decay law of the fractal
dimension for large distances is also valid in this case. In
Sec. VI, we summarize our results and draw some conclu- 29
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100 |

FIG. 1. The deflection function (b) for an isolated Schwarz-

Il. SCATTERING MAP FOR TWO BLACK HOLES .
schild black hole.

WITH EQUAL MASSES

We begin by reviewing some basic results concerning the If the impact parameter is below the critical valig
motion of test particles in the field of an isolated Schwarzs=3/3M, the trajectory of the light ray spirals down the
child black hole[4,5]. We consider specifically the case of event horizon and plunges into the black holeb¥b,, the
null geodesicdtrajectories of particles with zero rest mass, trajectory circles the black hole and escapes again towards
such as photonswhich concerns us most, but many featuresinfinity, being deflected by an angle The lowest valud of

of the dynamics also apply to massive particles. the radial coordinate along the trajectory(the “perihe-
The Schwarzschild metric is written in spherical coordi- lium™) is given by
nates as
P3
2
2M dr? TR (1)
dsz=(1— —)dtz— S 1240 P—2M
1- T Following Chandrasekhd#], we define the quantitie®, k
and y by

with dQ?=d#?+sirfAd¢? being the element of area on a

unit sphere, and is the time measured from a distant ob- Q*=(P—2M)(P+6M), @
server.M is the black hole’s mass in geometrized uni@ (

=c=1). We are interested only in the region of space-time kng_ P+6M 3)
outside the event horizom>2M. Due to the conservation 20Q '

of angular momentum, test particles move on a plane, which

can be chosen a8=#/2. The plane whereon the motion _ Q-P+2M

occurs is then described by the coordinateand ¢. The SIFTZ(X/Z)ZQ_P—JFGI\A- (4)

geodesic equations that describe trajectories of test particles
on this plane can be analytically integrated by means of el
liptical functions[4]. Here we are interested in the scattering
of null geodesics by the black hole. A light ray coming from A=m—2f(b), (5)
infinity towards the black hole is characterized by the impact

parameteb defined by the ratib=L/E, where the angular 54 the functiorf (b) is

momentunL and the energ¥ are constants of motion given

The scattering angla is then given by

by P
f(b)=2~/FLK(K) —F(x/2k)]. (6)
2M) dt Q
E=1-— an’
r HereF is the Jacobian elliptic integral arklis the complete
elliptic integral. In Fig. 1 we show a plot oA(b). As b
L= rzd_¢ approaches the critical valle from above A goes to infin-
dn -’ ity; trajectories withb sufficiently nearb, can circle the

black hole an arbitrary number of times before escaping, and
\ is the geodesic’s affine parameter. For null geodesics onlfor b=b., the light ray makes an infinite number of rota-
the ratio ofL andE is of importance to the dynamics. In the tions, and never escapes. This is a consequence of the exis-
asymptotically plane regiom—«, b corresponds to the tence of an unstable periodic orbitrat 3M, which appears
usual impact parameter of classical scattering problems. as a maximum in the effective potential. The orbits wlith
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=D, spiral towards the =3M orbit, and in the languageof |
dynamical systems they make up the stable manifold associ T
ated with this periodic orbit. e

The fact thatA assumes values above for a nonzero
range ofb implies the existence of a rainbow singularity in g Yo
the scattering cross section; this is to be contrasted with the .~ \¢
Newtonian Rutherford scattering, which shows no such sin-/
gularities. In factA assumes arbitrarily large values, and the :
differential cross section at any given anglés made up of %
an infinite number of contributions arising from trajectories ™. D
with A=6, A=6+2m, in general, A=6+2nm, corre- T
sponding to trajectories that circle the black holdimes
before being scattered towardsHowever, large values af
correspond to very low ranges lafthe set of trajectories that

scatters byd+2nw has a measure that decreases very rapfirst scattering. It is then scattered again, and may return to
idly with n. Chandrasekhd#] shows that the impact param- the first black hole, and so on. SinEe>2M, we consider

eterb,, corresponding to a scattering Iyt 2nr for large  the scattering process of each black hole separately and use

FIG. 2. Construction of the scattering map. The dotted line rep-
resents the trajectory of a light ray.

values ofn is given approximately by formulas(5) and(6) to determine the deflection angle due to
each black hole as a function of the incident impact param-
b,=b+3.48Me" (¢+2n™), (7))  eter.

By making the approximations mentioned above, we re-

This expression shows that the measure of the set of trajecluce the motion of light in the two-black-hole space-time to
tories scattered by+ 2ns decays exponentially with, and  a two-dimensional2D) map, as has been done [i8] (see
the contribution of orbits with larga to the cross section is also[7]) to study general features of chaotic scattering. To
small. In fact, we shall see later that in many cases it is alo this, we make the further assumption that the light rays
good approximation to consider only orbits with=0. have zero angular momentum in the direction of the axial

After reviewing some properties of an isolated black hole,symmetry axis, on which lie the two black holes; the orbits
we now consider the case of two black holes with equal masare then confined to a plane containing the two black holes.
M (we consider the case of different masses in SgcA¢  Due to the axial symmetry of the system, the motions on all
we mentioned in the Introduction, there is no exact solutiorsuch planes are similar. Now suppose we have a light ray
of Einstein’s field equations that describes this system. Beescaping from one of the black holes with impact parameter
cause of this, we assume that the two black holes are sepb; and with an escaping anglg, with respect to the sym-
rated by a distanc® much larger than their Schwarzschild metry axis, as shown schematically in Fig. 2. Since the black
radius 2M; in this limit the nonlinear interaction between the holes are considered to be very far apart, the impact param-
two gravitational fields can be ignored. In a real system, theeterb,,, ; of the light ray with respect to the other black hole
two black holes will be rotating around their center of mass;is the segment shown in Fig. 2(one black hole can be
however, their rotation speed is much smaller than the veloceonsidered to be “at infinity” as regards the otheWe use
ity of light. We can thus consider the two black holes to bethe convention that positive values lofmean that the ray is
fixed in space, without incurring in too much errdhis ap-  directed to the right side of the black hole, and rays with
proximation is further justified in the end of this Secfion negativeb are directed to the left; notice that “right” and
Notice that this approximation might not be valid for mas- “left” are defined with respect to the black hole the light ray
sive test particlegexcept in the ultrarelativistic limit, when is inciding on, and therefore the orientation is reversed after
when the trajectories are well approximated by null geodeeach iteration of the map. From elementary geometry, we
sics. Even though our approximations are admittedly crudehave |=b,+D sin¢. The deflection angle is given by
we believe they still retain some relationship with the realA(b, . ). The map is then written as
system.

We are interested in the orbits that never escape to infinity b,;1=b,+Dsing,, (8
or fall into one of the event horizons; these orbits make up
the basin boundary of the system, which will be discussed Gni1=7+d—A(b, 1) mod 2. 9

later in more detail. For the orbits not to escape, they need to

have impact parameters such that they are scattered by &he anglesp, are measured counterclockwisely with respect
leastw by one of the black holes. In the case of an isolatedo each black hole; again the orientation is reversed after
black hole, this corresponds to an impact parameter loweeach iteration. The first term in Eq9) comes from the
thanb=b,~5.356 98, which is less than three times the change in the angle’s orientation.

Schwarzschild radius. Since in our approximatbe-2M, Consider the initial conditionby=bgs.and¢,=0. Since

for the purpose of finding the basin boundary we can conA(bes) =7, we see from the above equations that these val-
sider that the light rays are scattered by each black holees ofb and¢ are a fixed point of the map. It corresponds to
separately, the other black hole being too far away to make the periodic orbit depicted in Fig. (8, which revolves
significant difference in the scattering. After suffering a scat-around the black holes, making a U-turn at each black hole
tering by one of the black holes, the ray may reach the otheand then heading towards the other. Another periodic orbit is
black hole, depending on its emerging trajectory after theshown in Fig. 8b). This orbit is such thab,,,;=—b,, and
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M 1/2
a=wAt~ —) . (10

D

§ § Since a—0 for large distances, the approximation is thus
justified.
. The general-relativistic corrections are more difficult to
(@ evaluate, but one can have some idea of the order of their
magnitude by considering the rate of charyef the sepa-
T T ration distance caused by the loss of energy by the system to
' the emission of gravitational waves. 8] it is shown thaD
§ in the limit of largeM/D is proportional to §1/D)3. Defin-
ing AD to be the variation oD in the time it takes for a light
ray to cross the distance between the black holes, we have

(b) - ( : ) 3

D

D (11)

FIG. 3. Two examples of periodic orbits of the scattering map.

Although the relativistic contributions to the motion of the
¢ni1=— ¢n. Inserting these conditions in Eq®) and(9),  particle is not restricted to the change df it is not unrea-
we find 2by= —D sin¢, and A(bg) = 7+ 2| ¢| (remember sonable to expect that the other contributions have the same
that the angles are defined modulus)2 with by>0. ¢y is  order of magnitude. In the case of black holes with two dif-
given by the solution of the equation ferent masses, all the previous estimates remain valid, with
M replaced by mawn,,M,), where M, and M, are the
masses of the black holes.

D |
A(ESIH|¢)O|) =7+2| ¢y
I1l. ANALYSIS OF THE SCATTERING MAP

) o ) In this section we proceed to study in detail the map de-
These are the simplest periodic orbits, but there are manyneq by Eqgs(8) and (9). We begin by a direct numerical

others. _ investigation of these equatiortfor a particular separation
We observe that Eq$8) and(9) are valid only as long as  gjstance, which reveals a fractal structure in the boundary
b remains within the range,<b<bes.. If bfalls out of this  pepween the initial conditions corresponding to different es-
interval, the ray either escapes or falls into one of the blackanes. We then proceed to explain how this fractal structure
holes, and the iteration must be stopped. arises from the dynamics of the miiags. (8) and (9)]. Fi-

We now analyze the validity of the approximations we naly we use the large separation approximation to obtain
made to obtain Eqg8) and(9). There are three approxima- some analytic results on the fractal dimension and other
tions involved: (1) the assumption that the trajectories of quantities related to the basin boundary.

light rays near one black hole are not significantly affected
by the other black hole’s gravitational fiel(®) the assump-

tion that the rotation of the black holes around the system’s A. Numerical investigation of the scattering map

center of mass can be neglected; dB¢ the exclusion of In order to iterate Eq$8) and (9) for given initial values
general relativistic effects such as the emission of gravita¢, andb,, we first have to be able to calculate the deflection
tional waves. angleA for a given impact parametér To do this, we must

To analyze the first approximation, consider a light raybegin by finding the “perihelium distanceP corresponding
with impact paramete. Only light rays withb of the order  to b; this is done by solving the third-order equatig) for
of bescdo Not immediately escape to infinity, so these are thé®. We use the well-known Newton-Raphson method, which
important ones for the dynamics. Their distance to the blaclguarantees a very fast convergef@g We then use Eq$2),
hole (the near ongis of the order ofb.s., which is of the  (3), and(4) to calculateQ, k, andy, and we finally substitute
order of M. We can roughly estimate the gravitational field these quantities in Eq$5) and (6) to obtainA(b). The el-
felt by these rays to be of the orderMf/b.sc~1. The gravi- liptical functionsF andK are computed by numerical rou-
tational field of the distant black hole, on the other hand, igines found in[9].
of the order ofM/D, and therefore the correction term to the  Depending on its initial conditions, a light ray may either
gravitational field due to the presence of the distant blacKall into one black hole, fall into the other black hole, or
hole is~M/D, which vanishes aB — . escape towards infinity. The set of initial conditions which
The rotation of the black holes around their common cendeads to each of these outcomes is called tibsin of that
ter of mass causes the axis defined by the center of the twautcome. In our numerical iteration of the midgygs.(8) and
black holes to rotate by an angiein the timeAt it takes for ~ (9)], we are interested in obtaining a basin portrait of the
a light ray to cross the distand2 separating the two black system. To do this, we have to choose a set of initial condi-
holes. We haveAt~D. The rotation frequency» can be tions and iterate them to find out to which basin they belong.
approximated by Kepler's lanw?~M/D?3. « is thus given Our choice is the one-dimensional set with=0 and an
by interval ofb. As we have seen in Sec. II,ib| <b, the light
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in all scales with the fractal regions, where the outcome of a

1
@ light ray is highly uncertain. This sensitivity of the dynamics
to the initial conditions is made precise with the definition of
§ 0 the box-counting dimensignwhich we now present briefly
[10].
We define thébasin boundaryof the system to be the set
-1 , , of points (initial conditions such that all neighborhoods of
520 529 540 these points have points belonging to at least two different
1 ' ' ' ) basins, no matter how small that neighborhood is. The fractal

nature of the basins shown in Fig. 4 results from a fractal
basin boundary10]. It is not difficult to see that a fractal
g 0 basin boundary implies a fundamental uncertainty in the final
outcome of an orbit. We now define the box-counting dimen-
sion of the basin boundary, which gives a measure of this
. . . uncertainty. Letby be a randomly chosen impact parameter
5356930 5356540 5:356950 5356960 in the interval[ b, ,besd; We considerg,=0 throughout for

' simplification. Letf(e) be the probability that there is a

) : :
© point of the basin boundary lying within a distanedrom
. bo. In the limit e—0, f generally scales witle by a power
g0 law. We thus write
HGE (12)
-1
5.35695830 5.356‘:)5840 5.356I95850 5.356‘:'5860
b/M

d is the box-counting dimension of the intersection of the
FIG. 4. Portrait of the basins as a function of the impact parambasin boundary with the one-dimensional section of initial
eterb, for ¢o=0. The “basin function’g(b) is defined to be 1 if conditions given byb e[b;,bes] and ¢o=0. Clearly, we
the orbit with initial conditionspo=0, by=Db falls into one of the must have &d=<1. If the basin boundary is regular, then
black holes,—1 if it falls into the other black hole, and O if it d=0: fractal boundaries hawa&>0. f can be interpreted as a
escapes to the asymptotically plane region. Even though the funGneasure of the uncertainty as to which basin the pbint

tion g(b) assumes only discrete values, the points are connected bryelongs, for a given errar in the initial condition, which is
straight lines for better visualization. Two successive magnifica-

. . N . . —always present in a real situation. For a regular basin bound-
tions of a small region of the initial interval are pictured, showing fd i | it If h fractal b d
the fractal dependency of on b. ary, f decreases linearly witk. If we have a fractal bound-
ary, however, the power in Eq12) is less than 1, and
ray always falls into the event horizon, and|ifj>bes., it  decreases much more slowly wighwhich makes the uncer-
always escapes. We thus choose the interval tdfeb  tainty in the outcome much higher than in the case of a
<besc. We divide this segment into 5000 p_o_ints, anc_i_iterateregular boundary. Thusl is a good measure of the sensitiv-
the map[(8) and (9)] for each of these initial conditions, ity to the initial conditions that results from a fractal basin
recording the final outcome for each point: if at any point inphoundary, and since it is a topological invari@ho], it is a
the iteration|b,| <b, this means that the light ray falls into meaningful characterization of chaos in general relativity.
one of the black holes, and|ib,| > besc, it escapes to infin- e calculate the box-counting dimensidmumerically
ity. _\Ne_defln_e_ the dlsgr_ete—valued functig(b) to be 1 if the by using the method we now explai0]. We pick a large
orbit with initial conditionso=0, bo=b falls into one of  ;mper of initial conditions randomly, and for each one of
the black holes,—1 if it falls into the other, and O if it hom we compute the mdggs. (8) and (9)], finding out its
escapes to.the asymptoucally plane reg@“’) gives a pic-  gytcome and therefore to which basin it belongs. We then do
ture of the intersections of the three basins with the segmenf . came thing to the two neighboring initial conditioms
01:'r?é rlzc:ﬁzbseﬁg nin Fig.( for D= 15M. We see that + e andb—e, for a given(smal) e, for eachb. If the three
uit1s shown In Fig.(& for D= o points do not belong to the same badirs labeled an “un-
there are large intervals in whidhis constant, intercalated o 2 L
certain” initial condition. For a large number of initial con-

by ranges ob whereg varies wildly. If by lies within one of o . : .
these latter ranges, the final outcome of the light ray is highl)ﬂ!t'ons’ we expect that the fraction of uncertain points for a

uncertain. In Fig. &) we show a magnification of one of JIV€N € approximatesf(e). Calculating in this wayf for
these regions. Except for the scale, it is very similar to FigSeveral values o, we use Eq(12) to obtaind from the
4(a). A further magnification is shown in Fig.(@, again inclination of the log-log plot off versuse. Applied to the
revealing structure in small scales. We have obtained evefyvo-black-hole map withD=15M, this method givesd
further magnifications, which are not shown here, and al=0.17=0.02. The error comes from the statistical uncer-
show similar structures, down to the smallest scales allowethinty which results from the finite number of points used in
by the numerical limitations. This shows thmhas a fractal the computation of. In our calculation, the number of initial
dependence ob. Notice that there are large intervals lof ~ conditions was such that the number of “uncertain points” is
whereg is perfectly regular. These regular regions are mixedalways higher than 200.
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hole. From Eq.(7), intervals corresponding to larges de-
crease exponentially with. In the next iteration, each of
these subintervals is itself divided into an infinite number of
intervals, and so on in the next iterations. This implies that
the underlying symbolic dynamics of the system has an infi-
nite alphabetan infinite number of symbalsin the limit of
infinite iterations, the set of surviving orbits is a fractal set
with zero measure. This set is the basin boundary, and its
fractality is responsible for the complex dynamics shown in
Fig. 4. The two fractal regions on the right of Figastcon-
sist of orbits whose first scattering has 0, that is, they are
deflected by the black hole by and 7+ «. The leftmost
fractal region in Fig. éa) is actually an infinite number of
very small regions, corresponding to orbits witk 0; the
scale of Fig. 4a) is too large for them to be distinguished.
This gives us an indication that the orbits with>0 are a

®) very small fraction of the basin boundary; we shall return to
this later in this section.

It is important to observe that the basin boundary is fractal
because the scattering functiadn(b) of the isolated black
hole (5) assumes values higher than which makes it pos-
sible for orbits to be scattered to both sides of the black hole,

B. The fractal basin boundary giving rise to the fractal basin boundary. The scattering of
. _ particles by two fixed Newtonian mass points is immediately

How does the fractal basin boundary arise from the dyseen to be regular, because Rutherford’s scattering function
namics of the mag(8) and (9)]? In order to answer this joeq not assume values higher thanThis is of course in
question, we first observe that every point in the basinyccordance with the fact that the fixed two-mass problem in
boundary gives rise to orbits that neither escape nor fall intqye\wtonian gravitation is integrable, since the Hamilton-

one of the black holettherwise they would be part of one j5.0hi equation of this system is separated in elliptical coor-
of the basins, which violates the definition of the bas'”dinates[ll].

boundary; that is, the basin boundary is made up of “eternal
orbits” which move forever around the two black holes. We
need thus to investigate these orbits to understand the forma-
tion of the basin boundary. We have seen that after being scattered by a black hole,
Consider the one-dimensional set of initial conditions pa-the light ray must have an impact parameter lying on the
rametrized by the impact parametewith ¢o=0. We have interval (13) to belong to the basin boundary. Sinbg
seen that ifb| <b, the orbit falls into the event horizon of a =3,3M~5.196 13 andb,.~5.356 98, the impact pa-
black hole, and if|b|>bes. the orbit escapes. Thus, the rameter must belong to one of two intervals of lendth
points of the basin boundary belong to the interval =besc—b~0.1608M (the two intervals correspond to
positive and negative impact paramejets our approxima-
|bl e [bec,besd, (13 tion we haveAb<D. Using this fact, we can approximate
o RS - the value ob in Fig. 5 byb,s., with an error ofAb at worst,
which is actually two disjoint intervals, corresponding to which means a fractional error of abaib/b,,~0.03. The

ositive and negative values bf However, not all points in " T : i
POSIIV gative valu Wev poInts | distancel in Fig. 5 traveled by orbits which were deflected

this interval are part of the basin boundary, of course; inb 5 5 2 in th .
order to survive the next iteration of the mg@) and (9)] Y (2n+1)m+a or ( n+21)772+ aint Ze previous scatter-
dng is thus given by I(/2)“+bg = (D/2)“, that is,

without escaping or falling, the corresponding orbits must b
deflected in such a way that they reach the other black hole
with an impact parameter within the intervd3). From Fig.

5 we see that for this to happen the orbits must be deflected i
by an angled in the neighborhood of (2+1)m+a, and  OF the maf(8) and(9)] to be well defined, we must have
either (+1)# or (2n+1)w+2«, depending on the pre- D>2be59_ Of course, this cond|t_|on is satisfied in our ap-
vious deflection suffered by the orbit; the angtedepends ProximationD>2M. The angle is calculated from Fig. 5
on the distance separating the black hoteis. the number of I thiS approximation using elementary geometry

turns the orbit makes around one of the black holes before

FIG. 5. (a) Two possible types of scatterings for an orbit which
was previously scattered by §2-1); (b) two scatterings for an
orbit which was previously deflected by 2 1)7+a« or (2n
+1)7+2a.

C. Some analytical results

L=+D?—4b:. (14)

moving on to the other one. For eachthere are two inter- sina= % (15)
vals of the deflection angle for which the orbit survives the D

next iteration without escaping or falling; these two intervals

correspond to the positive and negative valuel sdtisfying Consider a set of orbits with impact parameters filling the

Eqg. (13). In the first iteration, the initial intervall3) is di- interval [b.,b.sd of length Ab, which may have already
vided into infinitely many pairs of subintervals, each pairsuffered several previous scatterings. The subsets of these
labeled by the numban of times the orbit circles the black orbits that survive the next scattering without escaping nor
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falling into one of the black holes are subintervals in the We see that\ is two or three orders of magnitude
neighborhood ob Wherebk are the values of the impact smaller that)\o, and the other)\k’s with n=1 are even
parameter such that the orb|t is deflected by an angle o§maller. From Eq(7) they decrease exponentially with in-

(2n+1)m+ka (k=0, 1, or 2. They are solutions of the creasingn. These values show that for most purposes we can

algebraic equation

A(b¥)=(2n+1)7+ka, (16)
with A given by Eq.(5). The fractal regions of Fig.(4) are

located around values &f given by Eq.(16) with k=0 and

disregard the contributions to the dynamics from deflections
with n>0: the measure of the set of orbits that make mul-
tiple turns around a black hole is negligible. This approxima-
tion will be used extensively in the next section.
Equations(16)—(18) are not exact, because the derivative
A’(b) varies in the mtervaIsAbk To estimate the error, we

k=1. Depending on the previous deflections suffered by &,5e the fact that thAbk are small. The erroﬁ)\k in )\k

given set of trajectories, the valugs=1 andk=2 must be
used instead in Eq16), according to the rules of the sym-
bolic dynamics we exposed above.

Because the distand® is much larger tham\b, the al-
lowed range in the deflection ang&%ﬁﬁ around (2 +1)m

then to first order

AbO A//(bO) 1’2_Ab3.|"2 A"(b%’z)
DA’ "L (AR

0_

n

+ka of an orbit such that it arrives at the other black hole

with b in the interval(13) is approximately

o Ab 1, Ab
56,1—3, 60y =T 17
wherelL is given by Eq.14). The lengthA bﬁ of the interval
of surviving orbits aroundbﬁ is in this approximation much
smaller thanAb: Abﬁ<Ab. We can therefore approximate
AbK by the first-order expressiafibk~ 56%/|A’ (bX)|, with
A’=dA/db. We definerk=Ab¥/Ab as the fraction of the
interval [ b, ,besd (Or [ —bese, —be]) occupied by the sur-
viving orbits with b aroundb . We have

0_ 1 12_

=——— A} 18
" D|A"(bY) (19

LIA"(b23)]

Given a value oD, it is easy to solve Eq(16) numeri-
cally for b, with L and given by Eqgs.(14) and(15). For
D=15M, we find L~10.5M and «=~0.7956. By a direct
numerical calculation oA and its first derivatives, we find

b= A'(bJ)=-5.863M, A”"(bJ)=38.30M?,

bESO

bg=5.2662M, A’(bj)=—13.35M,

A"(b})=202.5M?2,
b3=5.227 2,

A’(b3)=—31.66M, (19

A"(b3)=1030M?,
b%=5.196 43, A’(b?)~—3600M,
A"(b9)~1.3x 107/M?.

HereA”=d?A/db?. The second derivative & will be used
below. Notice thabg is independent oD. Using Eq.(18),
we obtain

=0.011 37, )\0 0.007 134,

=0.003008, A{~1.85<10°.

Using AbX=Ab)\X, we get the fractional errof\X/\X,

0
S\O

ﬁ A”(bg)
D [A"(b)1?

ONL?
AR2

ﬁ A”(b%’z)
L (A" (7317
(20

0
)\n

The termsA”(bﬁ)/(A’(bﬁ))2 are of the order of 1, and the
termsAb/D and Ab/L are much smaller than 1. Thus, the
fractional errors in the vaIue)sﬁ given by the approximate
formula (18) are very small, of about 0.01 f@a =15M. In
the limit of largeD, we havel ~D, and SA/\K~1/D: the
fractional error is inversely proportional to the separafipn
and the approximationil8) gets better and better & in-
creases.

IV. THE LIMIT D—o

We now take the limitD>2b.... From Egs.(15 and
(14), we have that in this limiw—0 andL—D. Equations
(16) and (18) then imply thatbX—b%=b, and AbX— Ab?
=Ab,: the two intervals of surviving orbits of a givem
come closer and closer &increases, and their lengths be-
come the same in this limit. Because of the approximate
equality in the lengths, the magnification of each interval by
(\,) ! gives approximately the same set of intervals. In
other words, the fractal basin boundarysaf-similarin this
approximation.

The box-counting dimension of this self-similar set is
given by the solution of the transcendental equafibi,

22, ()=

As we have seen in Sec. IN; is many orders of magni-
tude smaller than . Therefore, it is a good approximation
to neglect terms witm>0 in the above expression, amd
can then be explicitly written as

In2

et (21)

From Eq.(18), we have §o) "1=DJ|A’(besd|, and we get
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In2 Substituting Eqs(18) and (19) with M replaced byM, and

d= nD+p’ (22 M, we obtain\d and\5, and we find
with B=In|A’(besd|- For largeD, the box-counting dimen- _ In2 23
sion decays logarithmically with the distance. If we substi- " InD+8+Iny7y’ @3

tute D=15M, we getd=0.155, in agreement with the nu-
merical value ofd=0.17-0.02 discussed above, even wheren=M,/M,, B=In|A’(b,)|. The difference between
though the limitD>2b,.is only modestly satisfied at best. Egs.(23) and(22) is the constant term W in the denomi-
nator ofd. If M,=M,, thenn=1 and Eq.(23) is equal to
V. THE CASE OF DIFFERENT MASSES Eq. (22), as of course it should. In the limi—«, d also
decays logarithmically with distance in this case, as in the

Now we consider the case of two black holes with differ- case of equal masses.

ent masseM, and M, . We restrict ourselves to the limit
D>2h3,,2b8., whereb?, . andb®,. are the impact param-
eters corresponding to deflections of of the two black
holes. Because the two masses are different, the rakiges In this paper we have studied the chaotic behavior of light
andAby, of impact parameters for surviving orbits are differ- rays orbiting a system of two nonrotating fixed black holes.
ent, and therefore the allowed range of scattering angles dgve have assumed that the black holes are sufficiently far
pends on which black hole the orbit is heading to. Thisaway from each other, so that we could consider the motion
means that the “shrinking factors\ and\{ [given by Eq.  of the light rays to be the result of the action of each black
(18)] depend on the black hole. This spoils the property othole separately. Since the equations of motion of a light ray
self-similarity, which is a feature of the equal-masses case iin the space-time of an isolated black hole can be solved
the limit D—o. However, since the orbits are scattered al-analytically, using this approximation we reduce the motion
ternately by the two black holes, tisguareof the scattering of the massless test particle to a two-dimensional map. Nu-
map defined by the system is self-similar, in the lidit merical integration of this map showed the existence of a
— 00, fractal basin boundary, with an associated fractional box-
After two iterations, of each intervdb,,b.sJ there re-  counting dimension. In the limit of a large separation dis-
mains four subsets of surviving orbits, all with size of ap-tanceD between the two black holes, we have been able to
proximately )\S)\g (we are not considering orbits with obtain an analytical expression to the asymptotic value of the
>0). Each of these subsets gives rise to four others after twbox-counting dimensiom. We found thatd~ (InD)~* for
further iterations, and so on. The box-counting dimension ofargeD; this result also holds for different black hole masses.

the surviving set is given by10] 4(\3\g)9=1, that is

VI. CONCLUSIONS
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