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We study the motion of light in the gravitational field of two Schwarzschild black holes, making the
approximation that they are far apart, so that the motion of light rays in the neighborhood of one black hole can
be considered to be the result of the action of each black hole separately. Using this approximation, the
dynamics is reduced to a two-dimensional map, which we study both numerically and analytically. The map is
found to be chaotic, with a fractal basin boundary separating the possible outcomes of the orbits~escape or
falling into one of the black holes!. In the limit of large separation distances, the basin boundary becomes a
self-similar Cantor set, and we find that the box-counting dimension decays slowly with the separation dis-
tance, following a logarithmic decay law.

PACS number~s!: 05.45.Df, 95.10.Fh, 04.70.Bw
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I. INTRODUCTION

In this paper we study the motion of light~null geodesics!
in the gravitational field of two nonrotating Schwarzsch
black holes. In general relativity, solutions of the field equ
tions describing more than one purely gravitational sou
are necessarily nonstationary because gravity is always
tractive ~we are not considering exotic matter!; there is no
possibility of arbitrarily ‘‘pinning’’ sources as is done i
Newtonian gravitation, because of the automatic s
consistency of the nonlinear Einstein’s equations. If we
mand that the two black holes be fixed in space, then
solution includes a conical singularity~a ‘‘strut’’ ! lying on
the axis on which the two masses are located@1#. This sin-
gularity appears as a natural consequence of the field e
tions, and it is necessary to keep the two masses from fa
towards each other. However, this singularity would have
be made of very exotic matter, and this solution does
describe any realistic system in astrophysics. The real s
tion to the relativistic two-body problem can have no coni
singularities, and it is necessarily nonstationary. The t
black holes will spiral around each other, emitting gravi
tional waves, which makes this problem even more diffic
There is no exact solution for the relativistic two-body pro
lem, and even a numerical solution has eluded the most p
erful computers.

In order to cope with this problem, Contopoulos@2# and
Dettmanet al. @3# have used the Majumdar-Papapetrou so
tion @1# to study the dynamics of test particles in a spa
time with two black holes~test particles are particles wit
negligible mass and no internal degrees of freedom!. The
Majumdar-Papapetrou metric used by Contopoulos descr
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two nonrotating black holes with extreme electric char
(Q5M in relativistic units!, whose gravitational pull is ex-
actly matched by their electrostatic repulsion, thereby allo
ing a static mass configuration. They have found that in t
metric the motion of both light and massive particles is ch
otic, with a fractal invariant set and a fractal basin bounda
However, it is very unlikely that the Majumdar-Papapetr
metric describes realistic astronomical objects, since ther
no known realistic astrophysical process by which a bla
hole with extreme charge could be formed. Even though
two black holes with extreme charge have proven to b
useful model, it is interesting to address the problem of t
uncharged black holes, even if using an idealized mo
This is what we do in this paper, for the motion of light an
other massless particles. Our model is admittedly highly i
alized, but nevertheless we think it keeps some of the b
features of the dynamics of the real system, besides bein
interesting dynamical system by itself.

In order to overcome the fact that there is no static so
tion for the two-black-hole system, we consider the ca
when the two black holes are far apart, with a distance m
larger than their Schwarzschild radii. In this case, nonlin
effects in the field equations are expected to be small, and
can approximate the motion of test particles in the neighb
hood of one of the masses as being the result of the fiel
that mass alone and disregard the effect of the other b
hole as being negligible. Using this approximation, the m
tion of test particles in the two-black-hole system is trea
as a combination of motions caused by isolated Schwa
child black holes. Since the equations of motion for t
Schwarzschild geometry can be analytically integrated,
dynamical system is reduced to a map, which is much ea
to study than a system of ordinary differential equatio
This scattering map is built in Sec. II for the simple case
two black holes with equal masses. In Sec. III we show t
this map has a fractal basin boundary separating the pos
outcomes of a light ray in the two-black-hole field, name
falling into either of the black holes or escaping towards
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-

4784 ©2000 The American Physical Society

https://core.ac.uk/display/296681569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ed
al
w
th
el
re

i
fi

w
p
ta
. I
cl

th
zs
of
s
e

di-

a
b-

m

ic
n

ic
e

ng
m
ac

n

n
e

e

ards

and
-

exis-

PRE 62 4785SCATTERING MAP FOR TWO BLACK HOLES
asymptotically plane infinity. The fractal~box-counting! di-
mension of this basin boundary is numerically calculat
and the sensitivity to initial conditions implied by the fract
nature of the boundary is thereby quantified. In Sec. IV
use explicitly the condition of large separation between
black holes. In this limit, the basin boundary becomes a s
similar Cantor set, which allows us to obtain analytical
sults on the fractal dimension of the basin boundary and
dependence on the distance between the black holes. We
that the fractal dimension decays very slowly~logarithmi-
cally! with distance. In Sec. V, we consider the case of t
black holes with unequal masses, in the limit of a large se
ration; we find that the logarithmic decay law of the frac
dimension for large distances is also valid in this case
Sec. VI, we summarize our results and draw some con
sions.

II. SCATTERING MAP FOR TWO BLACK HOLES
WITH EQUAL MASSES

We begin by reviewing some basic results concerning
motion of test particles in the field of an isolated Schwar
child black hole@4,5#. We consider specifically the case
null geodesics~trajectories of particles with zero rest mas
such as photons!, which concerns us most, but many featur
of the dynamics also apply to massive particles.

The Schwarzschild metric is written in spherical coor
nates as

ds25S 12
2M

r Ddt22
dr2

12
2M

r

2r 2dV2,

with dV25du21sin2udf2 being the element of area on
unit sphere, andt is the time measured from a distant o
server.M is the black hole’s mass in geometrized units (G
5c51). We are interested only in the region of space-ti
outside the event horizon,r .2M . Due to the conservation
of angular momentum, test particles move on a plane, wh
can be chosen asu5p/2. The plane whereon the motio
occurs is then described by the coordinatesr and f. The
geodesic equations that describe trajectories of test part
on this plane can be analytically integrated by means of
liptical functions@4#. Here we are interested in the scatteri
of null geodesics by the black hole. A light ray coming fro
infinity towards the black hole is characterized by the imp
parameterb defined by the ratiob5L/E, where the angular
momentumL and the energyE are constants of motion give
by

E5S 12
2M

r D dt

dl
,

L5r 2
df

dl
.

l is the geodesic’s affine parameter. For null geodesics o
the ratio ofL andE is of importance to the dynamics. In th
asymptotically plane regionr→`, b corresponds to the
usual impact parameter of classical scattering problems.
,
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If the impact parameter is below the critical valuebc

53A3M , the trajectory of the light ray spirals down th
event horizon and plunges into the black hole. Ifb.bc , the
trajectory circles the black hole and escapes again tow
infinity, being deflected by an angleD. The lowest valueP of
the radial coordinater along the trajectory~the ‘‘perihe-
lium’’ ! is given by

b25
P3

P22M
. ~1!

Following Chandrasekhar@4#, we define the quantitiesQ, k
andx by

Q25~P22M !~P16M !, ~2!

k25
Q2P16M

2Q
, ~3!

sin2~x/2!5
Q2P12M

Q2P16M
. ~4!

The scattering angleD is then given by

D5p22 f ~b!, ~5!

and the functionf (b) is

f ~b!52AP

Q
@K~k!2F~x/2,k!#. ~6!

HereF is the Jacobian elliptic integral andK is the complete
elliptic integral. In Fig. 1 we show a plot ofD(b). As b
approaches the critical valuebc from above,D goes to infin-
ity; trajectories withb sufficiently nearbc can circle the
black hole an arbitrary number of times before escaping,
for b5bc , the light ray makes an infinite number of rota
tions, and never escapes. This is a consequence of the
tence of an unstable periodic orbit atr 53M , which appears
as a maximum in the effective potential. The orbits withb

FIG. 1. The deflection functionD(b) for an isolated Schwarz-
schild black hole.
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4786 PRE 62ALESSANDRO P. S. de MOURA AND PATRICIO S. LETELIER
5bc spiral towards ther 53M orbit, and in the language o
dynamical systems they make up the stable manifold ass
ated with this periodic orbit.

The fact thatD assumes values abovep for a nonzero
range ofb implies the existence of a rainbow singularity
the scattering cross section; this is to be contrasted with
Newtonian Rutherford scattering, which shows no such s
gularities. In fact,D assumes arbitrarily large values, and t
differential cross section at any given angleu is made up of
an infinite number of contributions arising from trajectori
with D5u, D5u12p, in general, D5u12np, corre-
sponding to trajectories that circle the black holen times
before being scattered towardsu. However, large values ofn
correspond to very low ranges ofb: the set of trajectories tha
scatters byu12np has a measure that decreases very r
idly with n. Chandrasekhar@4# shows that the impact param
eter bn corresponding to a scattering byu12np for large
values ofn is given approximately by

bn5bc13.48Me2(u12np). ~7!

This expression shows that the measure of the set of tra
tories scattered byu12np decays exponentially withn, and
the contribution of orbits with largen to the cross section is
small. In fact, we shall see later that in many cases it i
good approximation to consider only orbits withn50.

After reviewing some properties of an isolated black ho
we now consider the case of two black holes with equal m
M ~we consider the case of different masses in Sec. V!. As
we mentioned in the Introduction, there is no exact solut
of Einstein’s field equations that describes this system.
cause of this, we assume that the two black holes are s
rated by a distanceD much larger than their Schwarzschi
radius 2M ; in this limit the nonlinear interaction between th
two gravitational fields can be ignored. In a real system,
two black holes will be rotating around their center of ma
however, their rotation speed is much smaller than the ve
ity of light. We can thus consider the two black holes to
fixed in space, without incurring in too much error~this ap-
proximation is further justified in the end of this Section!.
Notice that this approximation might not be valid for ma
sive test particles~except in the ultrarelativistic limit, when
when the trajectories are well approximated by null geo
sics!. Even though our approximations are admittedly cru
we believe they still retain some relationship with the re
system.

We are interested in the orbits that never escape to infi
or fall into one of the event horizons; these orbits make
the basin boundary of the system, which will be discus
later in more detail. For the orbits not to escape, they nee
have impact parameters such that they are scattered b
leastp by one of the black holes. In the case of an isola
black hole, this corresponds to an impact parameter lo
thanb5besc'5.356 96M , which is less than three times th
Schwarzschild radius. Since in our approximationD@2M ,
for the purpose of finding the basin boundary we can c
sider that the light rays are scattered by each black h
separately, the other black hole being too far away to mak
significant difference in the scattering. After suffering a sc
tering by one of the black holes, the ray may reach the o
black hole, depending on its emerging trajectory after
ci-
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first scattering. It is then scattered again, and may return
the first black hole, and so on. SinceD@2M , we consider
the scattering process of each black hole separately and
formulas~5! and~6! to determine the deflection angle due
each black hole as a function of the incident impact para
eter.

By making the approximations mentioned above, we
duce the motion of light in the two-black-hole space-time
a two-dimensional~2D! map, as has been done in@6# ~see
also @7#! to study general features of chaotic scattering.
do this, we make the further assumption that the light ra
have zero angular momentum in the direction of the ax
symmetry axis, on which lie the two black holes; the orb
are then confined to a plane containing the two black ho
Due to the axial symmetry of the system, the motions on
such planes are similar. Now suppose we have a light
escaping from one of the black holes with impact parame
bn and with an escaping anglefn with respect to the sym-
metry axis, as shown schematically in Fig. 2. Since the bl
holes are considered to be very far apart, the impact par
eterbn11 of the light ray with respect to the other black ho
is the segmentl shown in Fig. 2~one black hole can be
considered to be ‘‘at infinity’’ as regards the other!. We use
the convention that positive values ofb mean that the ray is
directed to the right side of the black hole, and rays w
negativeb are directed to the left; notice that ‘‘right’’ and
‘‘left’’ are defined with respect to the black hole the light ra
is inciding on, and therefore the orientation is reversed a
each iteration of the map. From elementary geometry,
have l 5bn1D sinf. The deflection angle is given b
D(bn11). The map is then written as

bn115bn1D sinfn , ~8!

fn115p1fn2D~bn11! mod 2p. ~9!

The anglesfn are measured counterclockwisely with respe
to each black hole; again the orientation is reversed a
each iteration. The first term in Eq.~9! comes from the
change in the angle’s orientation.

Consider the initial conditionsb05besc andf050. Since
D(besc)5p, we see from the above equations that these v
ues ofb andf are a fixed point of the map. It corresponds
the periodic orbit depicted in Fig. 3~a!, which revolves
around the black holes, making a U-turn at each black h
and then heading towards the other. Another periodic orb
shown in Fig. 3~b!. This orbit is such thatbn1152bn and

FIG. 2. Construction of the scattering map. The dotted line r
resents the trajectory of a light ray.
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PRE 62 4787SCATTERING MAP FOR TWO BLACK HOLES
fn1152fn . Inserting these conditions in Eqs.~8! and ~9!,
we find 2b052D sinf0 and D(b0)5p12uf0u ~remember
that the angles are defined modulus 2p), with b0.0. f0 is
given by the solution of the equation

DS D

2
sinuf0u D5p12uf0u.

These are the simplest periodic orbits, but there are m
others.

We observe that Eqs.~8! and~9! are valid only as long as
b remains within the rangebc,b,besc. If b falls out of this
interval, the ray either escapes or falls into one of the bl
holes, and the iteration must be stopped.

We now analyze the validity of the approximations w
made to obtain Eqs.~8! and~9!. There are three approxima
tions involved: ~1! the assumption that the trajectories
light rays near one black hole are not significantly affec
by the other black hole’s gravitational field;~2! the assump-
tion that the rotation of the black holes around the syste
center of mass can be neglected; and~3! the exclusion of
general relativistic effects such as the emission of grav
tional waves.

To analyze the first approximation, consider a light r
with impact parameterb. Only light rays withb of the order
of besc do not immediately escape to infinity, so these are
important ones for the dynamics. Their distance to the bl
hole ~the near one! is of the order ofbesc, which is of the
order of M. We can roughly estimate the gravitational fie
felt by these rays to be of the order ofM /besc;1. The gravi-
tational field of the distant black hole, on the other hand
of the order ofM /D, and therefore the correction term to th
gravitational field due to the presence of the distant bl
hole is;M /D, which vanishes asD→`.

The rotation of the black holes around their common c
ter of mass causes the axis defined by the center of the
black holes to rotate by an anglea in the timeDt it takes for
a light ray to cross the distanceD separating the two black
holes. We haveDt'D. The rotation frequencyv can be
approximated by Kepler’s law:v2;M /D3. a is thus given
by

FIG. 3. Two examples of periodic orbits of the scattering ma
ny
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a5vDt;S M

D D 1/2

. ~10!

Since a→0 for large distances, the approximation is th
justified.

The general-relativistic corrections are more difficult
evaluate, but one can have some idea of the order of t
magnitude by considering the rate of changeḊ of the sepa-
ration distance caused by the loss of energy by the syste
the emission of gravitational waves. In@8# it is shown thatḊ
in the limit of largeM /D is proportional to (M /D)3. Defin-
ing DD to be the variation ofD in the time it takes for a light
ray to cross the distance between the black holes, we ha

DD

D
;S M

D D 3

. ~11!

Although the relativistic contributions to the motion of th
particle is not restricted to the change ofD, it is not unrea-
sonable to expect that the other contributions have the s
order of magnitude. In the case of black holes with two d
ferent masses, all the previous estimates remain valid, w
M replaced by max(Ma ,Mb), where Ma and Mb are the
masses of the black holes.

III. ANALYSIS OF THE SCATTERING MAP

In this section we proceed to study in detail the map
fined by Eqs~8! and ~9!. We begin by a direct numerica
investigation of these equations~for a particular separation
distance!, which reveals a fractal structure in the bounda
between the initial conditions corresponding to different
capes. We then proceed to explain how this fractal struc
arises from the dynamics of the map@Eqs. ~8! and ~9!#. Fi-
nally, we use the large separation approximation to obt
some analytic results on the fractal dimension and ot
quantities related to the basin boundary.

A. Numerical investigation of the scattering map

In order to iterate Eqs~8! and ~9! for given initial values
f0 andb0, we first have to be able to calculate the deflecti
angleD for a given impact parameterb. To do this, we must
begin by finding the ‘‘perihelium distance’’P corresponding
to b; this is done by solving the third-order equation~1! for
P. We use the well-known Newton-Raphson method, wh
guarantees a very fast convergence@9#. We then use Eqs.~2!,
~3!, and~4! to calculateQ, k, andx, and we finally substitute
these quantities in Eqs.~5! and ~6! to obtainD(b). The el-
liptical functionsF and K are computed by numerical rou
tines found in@9#.

Depending on its initial conditions, a light ray may eith
fall into one black hole, fall into the other black hole, o
escape towards infinity. The set of initial conditions whi
leads to each of these outcomes is called thebasin of that
outcome. In our numerical iteration of the map@Eqs.~8! and
~9!#, we are interested in obtaining a basin portrait of t
system. To do this, we have to choose a set of initial con
tions and iterate them to find out to which basin they belo
Our choice is the one-dimensional set withf050 and an
interval ofb. As we have seen in Sec. II, ifubu,bc , the light



at
,
in

o

e

h
f
ig

v
a
e

e

f a
s
of

t
f
ent
ctal
tal
l
nal
n-

this
ter

a

he
ial

n
a
t

nd-

-
f a
v-
in

.

f

do

-
r a

er-
in
l
is

m

t
un
d
ca
ng

4788 PRE 62ALESSANDRO P. S. de MOURA AND PATRICIO S. LETELIER
ray always falls into the event horizon, and ifubu.besc, it
always escapes. We thus choose the interval to bebc,b
,besc. We divide this segment into 5000 points, and iter
the map@~8! and ~9!# for each of these initial conditions
recording the final outcome for each point: if at any point
the iterationubnu,bc , this means that the light ray falls int
one of the black holes, and ifubnu.besc, it escapes to infin-
ity. We define the discrete-valued functiong(b) to be 1 if the
orbit with initial conditionsf050, b05b falls into one of
the black holes,21 if it falls into the other, and 0 if it
escapes to the asymptotically plane region.g(b) gives a pic-
ture of the intersections of the three basins with the segm
f050, bc,b,besc.

The result is shown in Fig. 4~a! for D515M . We see that
there are large intervals in whichg is constant, intercalated
by ranges ofb whereg varies wildly. If b0 lies within one of
these latter ranges, the final outcome of the light ray is hig
uncertain. In Fig. 4~b! we show a magnification of one o
these regions. Except for the scale, it is very similar to F
4~a!. A further magnification is shown in Fig. 4~c!, again
revealing structure in small scales. We have obtained e
further magnifications, which are not shown here, and
show similar structures, down to the smallest scales allow
by the numerical limitations. This shows thatg has a fractal
dependence onb. Notice that there are large intervals ofb
whereg is perfectly regular. These regular regions are mix

FIG. 4. Portrait of the basins as a function of the impact para
eterb, for f050. The ‘‘basin function’’g(b) is defined to be 1 if
the orbit with initial conditionsf050, b05b falls into one of the
black holes,21 if it falls into the other black hole, and 0 if i
escapes to the asymptotically plane region. Even though the f
tion g(b) assumes only discrete values, the points are connecte
straight lines for better visualization. Two successive magnifi
tions of a small region of the initial interval are pictured, showi
the fractal dependency ofg on b.
e

nt

ly

.

en
ll
d

d

in all scales with the fractal regions, where the outcome o
light ray is highly uncertain. This sensitivity of the dynamic
to the initial conditions is made precise with the definition
the box-counting dimension, which we now present briefly
@10#.

We define thebasin boundaryof the system to be the se
of points ~initial conditions! such that all neighborhoods o
these points have points belonging to at least two differ
basins, no matter how small that neighborhood is. The fra
nature of the basins shown in Fig. 4 results from a frac
basin boundary@10#. It is not difficult to see that a fracta
basin boundary implies a fundamental uncertainty in the fi
outcome of an orbit. We now define the box-counting dime
sion of the basin boundary, which gives a measure of
uncertainty. Letb0 be a randomly chosen impact parame
in the interval@bc ,besc#; we considerf050 throughout for
simplification. Let f (e) be the probability that there is
point of the basin boundary lying within a distancee from
b0. In the limit e→0, f generally scales withe by a power
law. We thus write

f ~e!}e12d. ~12!

d is the box-counting dimension of the intersection of t
basin boundary with the one-dimensional section of init
conditions given bybP@bc ,besc# and f050. Clearly, we
must have 0<d<1. If the basin boundary is regular, the
d50; fractal boundaries haved.0. f can be interpreted as
measure of the uncertainty as to which basin the poinb
belongs, for a given errore in the initial condition, which is
always present in a real situation. For a regular basin bou
ary, f decreases linearly withe. If we have a fractal bound-
ary, however, the power in Eq.~12! is less than 1, andf
decreases much more slowly withe, which makes the uncer
tainty in the outcome much higher than in the case o
regular boundary. Thus,d is a good measure of the sensiti
ity to the initial conditions that results from a fractal bas
boundary, and since it is a topological invariant@10#, it is a
meaningful characterization of chaos in general relativity

We calculate the box-counting dimensiond numerically
by using the method we now explain@10#. We pick a large
number of initial conditionsb randomly, and for each one o
them we compute the map@Eqs.~8! and~9!#, finding out its
outcome and therefore to which basin it belongs. We then
the same thing to the two neighboring initial conditionsb
1e andb2e, for a given~small! e, for eachb. If the three
points do not belong to the same basin,b is labeled an ‘‘un-
certain’’ initial condition. For a large number of initial con
ditions, we expect that the fraction of uncertain points fo
given e approximatesf (e). Calculating in this wayf for
several values ofe, we use Eq.~12! to obtain d from the
inclination of the log-log plot off versuse. Applied to the
two-black-hole map withD515M , this method givesd
50.1760.02. The error comes from the statistical unc
tainty which results from the finite number of points used
the computation off. In our calculation, the number of initia
conditions was such that the number of ‘‘uncertain points’’
always higher than 200.

-
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PRE 62 4789SCATTERING MAP FOR TWO BLACK HOLES
B. The fractal basin boundary

How does the fractal basin boundary arise from the
namics of the map@~8! and ~9!#? In order to answer this
question, we first observe that every point in the ba
boundary gives rise to orbits that neither escape nor fall
one of the black holes~otherwise they would be part of on
of the basins, which violates the definition of the bas
boundary!; that is, the basin boundary is made up of ‘‘etern
orbits’’ which move forever around the two black holes. W
need thus to investigate these orbits to understand the fo
tion of the basin boundary.

Consider the one-dimensional set of initial conditions p
rametrized by the impact parameterb with f050. We have
seen that ifubu,bc the orbit falls into the event horizon of
black hole, and ifubu.besc the orbit escapes. Thus, th
points of the basin boundary belong to the interval

ubuP@bc ,besc#, ~13!

which is actually two disjoint intervals, corresponding
positive and negative values ofb. However, not all points in
this interval are part of the basin boundary, of course;
order to survive the next iteration of the map@~8! and ~9!#
without escaping or falling, the corresponding orbits must
deflected in such a way that they reach the other black h
with an impact parameter within the interval~13!. From Fig.
5 we see that for this to happen the orbits must be defle
by an angleu in the neighborhood of (2n11)p1a, and
either (2n11)p or (2n11)p12a, depending on the pre
vious deflection suffered by the orbit; the anglea depends
on the distance separating the black holes.n is the number of
turns the orbit makes around one of the black holes be
moving on to the other one. For eachn, there are two inter-
vals of the deflection angleu for which the orbit survives the
next iteration without escaping or falling; these two interv
correspond to the positive and negative values ofb satisfying
Eq. ~13!. In the first iteration, the initial interval~13! is di-
vided into infinitely many pairs of subintervals, each p
labeled by the numbern of times the orbit circles the blac

FIG. 5. ~a! Two possible types of scatterings for an orbit whi
was previously scattered by (2n11)p; ~b! two scatterings for an
orbit which was previously deflected by (2n11)p1a or (2n
11)p12a.
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hole. From Eq.~7!, intervals corresponding to largen’s de-
crease exponentially withn. In the next iteration, each o
these subintervals is itself divided into an infinite number
intervals, and so on in the next iterations. This implies t
the underlying symbolic dynamics of the system has an i
nite alphabet~an infinite number of symbols!. In the limit of
infinite iterations, the set of surviving orbits is a fractal s
with zero measure. This set is the basin boundary, and
fractality is responsible for the complex dynamics shown
Fig. 4. The two fractal regions on the right of Fig. 4~a! con-
sist of orbits whose first scattering hasn50, that is, they are
deflected by the black hole byp and p1a. The leftmost
fractal region in Fig. 4~a! is actually an infinite number o
very small regions, corresponding to orbits withnÞ0; the
scale of Fig. 4~a! is too large for them to be distinguished
This gives us an indication that the orbits withn.0 are a
very small fraction of the basin boundary; we shall return
this later in this section.

It is important to observe that the basin boundary is frac
because the scattering functionD(b) of the isolated black
hole ~5! assumes values higher thanp, which makes it pos-
sible for orbits to be scattered to both sides of the black h
giving rise to the fractal basin boundary. The scattering
particles by two fixed Newtonian mass points is immediat
seen to be regular, because Rutherford’s scattering func
does not assume values higher thanp. This is of course in
accordance with the fact that the fixed two-mass problem
Newtonian gravitation is integrable, since the Hamilto
Jacobi equation of this system is separated in elliptical co
dinates@11#.

C. Some analytical results

We have seen that after being scattered by a black h
the light ray must have an impact parameter lying on
interval ~13! to belong to the basin boundary. Sincebc

53A3M'5.196 15M andbesc'5.356 96M , the impact pa-
rameter must belong to one of two intervals of lengthDb
5besc2bc'0.160 81M ~the two intervals correspond t
positive and negative impact parameters!. In our approxima-
tion we haveDb!D. Using this fact, we can approximat
the value ofb in Fig. 5 bybesc, with an error ofDb at worst,
which means a fractional error of aboutDb/besc'0.03. The
distanceL in Fig. 5 traveled by orbits which were deflecte
by (2n11)p1a or (2n11)p12a in the previous scatter
ing is thus given by (L/2)21besc

2 5(D/2)2, that is,

L5AD224besc
2 . ~14!

For the map@~8! and ~9!# to be well defined, we must hav
D.2besc. Of course, this condition is satisfied in our a
proximationD@2M . The anglea is calculated from Fig. 5
in this approximation using elementary geometry

sina5
2besc

D
. ~15!

Consider a set of orbits with impact parameters filling t
interval @bc ,besc# of length Db, which may have already
suffered several previous scatterings. The subsets of t
orbits that survive the next scattering without escaping
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falling into one of the black holes are subintervals in t
neighborhood ofbn

k , wherebn
k are the values of the impac

parameter such that the orbit is deflected by an angle
(2n11)p1ka (k50, 1, or 2!. They are solutions of the
algebraic equation

D~bn
k!5~2n11!p1ka, ~16!

with D given by Eq.~5!. The fractal regions of Fig. 4~a! are
located around values ofb given by Eq.~16! with k50 and
k51. Depending on the previous deflections suffered b
given set of trajectories, the valuesk51 andk52 must be
used instead in Eq.~16!, according to the rules of the sym
bolic dynamics we exposed above.

Because the distanceD is much larger thanDb, the al-
lowed range in the deflection angledun

k around (2n11)p
1ka of an orbit such that it arrives at the other black ho
with b in the interval~13! is approximately

dun
05

Db

D
, dun

1,25
Db

L
, ~17!

whereL is given by Eq.~14!. The lengthDbn
k of the interval

of surviving orbits aroundbn
k is in this approximation much

smaller thanDb: Dbn
k!Db. We can therefore approximat

Dbn
k by the first-order expressionDbn

k'dun
k/uD8(bn

k)u, with
D85dD/db. We defineln

k5Dbn
k/Db as the fraction of the

interval @bc ,besc# ~or @2besc,2bc#) occupied by the sur-
viving orbits with b aroundbn

k . We have

ln
05

1

DuD8~bn
0!u

, ln
1,25

1

LuD8~bn
1,2!u

. ~18!

Given a value ofD, it is easy to solve Eq.~16! numeri-
cally for bn

k , with L anda given by Eqs.~14! and ~15!. For
D515M , we find L'10.5M and a'0.7956. By a direct
numerical calculation ofD and its first derivatives, we find

b0
05besc, D8~b0

0!525.863/M , D9~b0
0!538.30/M2,

b0
155.266 29M , D8~b0

1!5213.35/M ,

D9~b0
1!5202.5/M2,

b0
255.227 29M , D8~b0

2!5231.66/M , ~19!

D9~b0
2!51030/M2,

b1
055.196 43M , D8~b1

0!'23600/M ,

D9~b1
0!'1.33107/M2.

HereD95d2D/db2. The second derivative ofD will be used
below. Notice thatbn

0 is independent ofD. Using Eq.~18!,
we obtain

l0
050.011 37, l0

150.007 134,

l0
250.003 008, l1

0'1.8531025.
of

a

We see thatl1
0 is two or three orders of magnitud

smaller thatl0
k , and the otherln

k’s with n>1 are even
smaller. From Eq.~7! they decrease exponentially with in
creasingn. These values show that for most purposes we
disregard the contributions to the dynamics from deflectio
with n.0: the measure of the set of orbits that make m
tiple turns around a black hole is negligible. This approxim
tion will be used extensively in the next section.

Equations~16!–~18! are not exact, because the derivati
D8(b) varies in the intervalsDbn

k . To estimate the error, we
use the fact that theDbn

k are small. The errordln
k in ln

k is
then to first order

dln
05

Dbn
0

D

D9~bn
0!

@D8~bn
0!#2

, dln
1,25

Dbn
1,2

L

D9~bn
1,2!

@D8~bn
1,2!#2

.

Using Dbn
k5Dbln

k , we get the fractional errordln
k/ln

k ,

dln
0

ln
0

5
Db

D

D9~bn
0!

@D8~bn
0!#2

,
dln

1,2

ln
1,2

5
Db

L

D9~bn
1,2!

@D8~bn
1,2!#2

.

~20!

The termsD9(bn
k)/(D8(bn

k))2 are of the order of 1, and the
termsDb/D and Db/L are much smaller than 1. Thus, th
fractional errors in the valuesln

k given by the approximate
formula ~18! are very small, of about 0.01 forD515M . In
the limit of largeD, we haveL'D, anddln

k/ln
k;1/D: the

fractional error is inversely proportional to the separationD,
and the approximation~18! gets better and better asD in-
creases.

IV. THE LIMIT D\`

We now take the limitD@2besc. From Eqs.~15! and
~14!, we have that in this limita→0 andL→D. Equations
~16! and ~18! then imply thatbn

k→bn
0[bn and Dbn

k→Dbn
0

[Dbn : the two intervals of surviving orbits of a givenn
come closer and closer asD increases, and their lengths b
come the same in this limit. Because of the approxim
equality in the lengths, the magnification of each interval
(ln)21 gives approximately the same set of intervals.
other words, the fractal basin boundary isself-similar in this
approximation.

The box-counting dimension of this self-similar set
given by the solution of the transcendental equation@10#,

2(
n50

`

~ln!d51.

As we have seen in Sec. IIIl1 is many orders of magni-
tude smaller thanl0. Therefore, it is a good approximatio
to neglect terms withn.0 in the above expression, andd
can then be explicitly written as

d5
ln 2

ln~l0!21
. ~21!

From Eq.~18!, we have (l0)215DuD8(besc)u, and we get
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d5
ln 2

ln D1b
, ~22!

with b5 lnuD8(besc)u. For largeD, the box-counting dimen-
sion decays logarithmically with the distance. If we subs
tute D515M , we getd50.155, in agreement with the nu
merical value of d50.1760.02 discussed above, eve
though the limitD@2besc is only modestly satisfied at bes

V. THE CASE OF DIFFERENT MASSES

Now we consider the case of two black holes with diffe
ent massesMa and Mb . We restrict ourselves to the limi
D@2besc

a ,2besc
b , wherebesc

a andbesc
b are the impact param

eters corresponding to deflections ofp of the two black
holes. Because the two masses are different, the rangesDba
andDbb of impact parameters for surviving orbits are diffe
ent, and therefore the allowed range of scattering angles
pends on which black hole the orbit is heading to. T
means that the ‘‘shrinking factors’’l0

a andl0
b @given by Eq.

~18!# depend on the black hole. This spoils the property
self-similarity, which is a feature of the equal-masses cas
the limit D→`. However, since the orbits are scattered
ternately by the two black holes, thesquareof the scattering
map defined by the system is self-similar, in the limitD
→`.

After two iterations, of each interval@bc ,besc# there re-
mains four subsets of surviving orbits, all with size of a
proximately l0

al0
b ~we are not considering orbits withn

.0). Each of these subsets gives rise to four others after
further iterations, and so on. The box-counting dimension
the surviving set is given by@10# 4(l0

al0
b)d51, that is

d52
ln 4

ln~l0
al0

b!
.

.
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Substituting Eqs.~18! and ~19! with M replaced byMa and
Mb , we obtainl0

a andl0
b , and we find

d5
ln 2

ln D1b1 lnAh
, ~23!

whereh5Ma /Mb , b5 lnuD8(besc
a )u. The difference between

Eqs.~23! and~22! is the constant term lnAh in the denomi-
nator ofd. If Ma5Mb , thenh51 and Eq.~23! is equal to
Eq. ~22!, as of course it should. In the limitD→`, d also
decays logarithmically with distance in this case, as in
case of equal masses.

VI. CONCLUSIONS

In this paper we have studied the chaotic behavior of li
rays orbiting a system of two nonrotating fixed black hole
We have assumed that the black holes are sufficiently
away from each other, so that we could consider the mo
of the light rays to be the result of the action of each bla
hole separately. Since the equations of motion of a light
in the space-time of an isolated black hole can be sol
analytically, using this approximation we reduce the moti
of the massless test particle to a two-dimensional map.
merical integration of this map showed the existence o
fractal basin boundary, with an associated fractional b
counting dimension. In the limit of a large separation d
tanceD between the two black holes, we have been able
obtain an analytical expression to the asymptotic value of
box-counting dimensiond. We found thatd;(ln D)21 for
largeD; this result also holds for different black hole mass
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