85 research outputs found

    Efficient computation of condition estimates for linear least squares problems

    Get PDF
    Linear least squares (LLS) is a classical linear algebra problem in scientific computing, arising for instance in many parameter estimation problems. In addition to computing efficiently LLS solutions, an important issue is to assess the numerical quality of the computed solution. The notion of conditioning provides a theoretical framework that can be used to measure the numerical sensitivity of a problem solution to perturbations in its data. We recall some results for least squares conditioning and we derive a statistical estimate for the conditioning of an LLS solution. We present numerical experiments to compare exact values and statistical estimates. We also propose performance results using new routines on top of the multicore-GPU library MAGMA. This set of routines is based on an efficient computation of the variance-covariance matrix for which, to our knowledge, there is no implementation in current public domain libraries LAPACK and ScaLAPACK

    Micro-pillar testing of amorphous silica

    No full text
    International audienceAmorphous silica exhibits a complex mechanical response. The elastic regime is highly non linear while plastic flow does not conserve volume, re- sulting in densification. As a result the quantification of a reliable constitutive equation is a difficult task. We have assessed the potential of micro-pillar compression testing for the investigation of the micromechanical properties of amorphous silica. We have calculated the response of amorphous silica mi- cropillars as predicted by Finite Element Analysis. The results were compared to preliminary micro-compression tests. In the calculations an advanced con- stitutive law including plastic response, densification and strain hardening was used. Special attention was paid to the evaluation of the impact of substrate compliance, pillar misalignment and friction conditions. We find that amor- phous silica is much more amenable than some metals to microcompression experiments due to a comparatively high ratio between yield stress and elastic modulus. The simulations are found to be very consistent with the experimen- tal results. However full agreement cannot be obtained without allowance for the non linear response of amorphous silica in the elastic regime

    A new approach to automatic and a priori mesh adaptation around circular holes for finite element analysis

    Get PDF
    Through our research on the integration of finite element analysis in the design and manufacturing process with CAD, we have proposed the concept of mesh pre-optimization. This concept consists in converting shape and analysis information in a size map (a mesh sizing function) with respect to various adaptation criteria (refining the mesh around geometric form features, minimizing the geometric discretization error, boundary conditions, etc.). This size map then represents a constraint that has to be respected by automatic mesh generation procedures. This paper introduces a new approach to automatic mesh adaptation around circular holes. This tool aims at optimizing, before any FEA, the mesh of a CAD model around circular holes. This approach, referred to as “a priori” mesh adaptation, should not be regarded as an alternative to adaptive a posteriori mesh refinement but as an efficient way to obtain reasonably accurate FEA results before a posteriori adaptation, which is particularly interesting when evaluating design scenarios. The approach is based on performing many offline FEA analyses on a reference case and deriving, from results and error distributions obtained, a relationship between mesh size and FEA error. This relationship can then be extended to target user specified FEA accuracy objectives in a priori mesh adaptation for any distribution of circular holes. The approach being purely heuristic, fulfilling FEA accuracy objectives, in all cases, cannot be theoretically guaranteed. However, results obtained using varying hole diameters and distributions in 2D show that this heuristic approach is reliable and useful. Preliminary results also show that extension of the method can be foreseen towards a priori mesh adaptation in 3D and mesh adaptation around other types of 2D features

    Does recognized genetic management in supportive breeding prevent genetic changes in life-history traits?

    No full text
    International audienceSupportive breeding is one of the last resort conservation strategies to avoid species extinction. Management of captive populations is challenging because several harmful genetic processes need to be avoided. Several recommendations have been proposed to limit these deleterious effects, but empirical assessments of these strategies remain scarce. We investigated the outcome of a genetic management in a supportive breeding for the Houbara Bustard. At the phenotypic level, we found an increase over generations in the mean values of gamete production, body mass and courtship display rate. Using an animal model, we found that phenotypic changes reflected genetic changes as evidenced by an increase in breeding values for all traits. These changes resulted from selection acting on gamete production and to a lesser extent on courtship display. Selection decreased over years for female gametes, emphasizing the effort of managers to increase the contribution of poor breeders to offspring recruited in the captive breeding. Our results shed light on very fast genetic changes in an exemplary captive programme that follows worldwide used recommendations and emphasizes the need of more empirical evidence of the effects of genetic guidelines on the prevention of genetic changes in supportive breeding

    Immune-Mediated Change in the Expression of a Sexual Trait Predicts Offspring Survival in the Wild

    Get PDF
    BACKGROUND: The "good genes" theory of sexual selection postulates that females choose mates that will improve their offspring's fitness through the inheritance of paternal genes. In spite of the attention that this hypothesis has given rise to, the empirical evidence remains sparse, mostly because of the difficulties of controlling for the many environmental factors that may covary with both the paternal phenotype and offspring fitness. Here, we tested the hypothesis that offspring sired by males of a preferred phenotype should have better survival in an endangered bird, the houbara bustard (Chlamydotis undulata undulata). METHODOLOGY/PRINCIPAL FINDINGS: We tested if natural and experimentally-induced variation in courtship display (following an inflammatory challenge) predicts the survival of offspring. Chicks were produced by artificial insemination of females, ensuring that any effect on survival could only arise from the transfer of paternal genes. One hundred and twenty offspring were equipped with radio transmitters, and their survival monitored in the wild for a year. This allowed assessment of the potential benefits of paternal genes in a natural setting, where birds experience the whole range of environmental hazards. Although natural variation in sire courtship display did not predict offspring survival, sires that withstood the inflammatory insult and maintained their courtship activity sired offspring with the best survival upon release. CONCLUSIONS: This finding is relevant both to enlighten the debate on "good genes" sexual selection and the management of supportive breeding programs

    Increasing the Number of Thyroid Lesions Classes in Microarray Analysis Improves the Relevance of Diagnostic Markers

    Get PDF
    BackgroundGenetic markers for thyroid cancers identified by microarray analysis have offered limited predictive accuracy so far because of the few classes of thyroid lesions usually taken into account. To improve diagnostic relevance, we have simultaneously analyzed microarray data from six public datasets covering a total of 347 thyroid tissue samples representing 12 histological classes of follicular lesions and normal thyroid tissue. Our own dataset, containing about half the thyroid tissue samples, included all categories of thyroid lesions. Methodology/Principal Findings Classifier predictions were strongly affected by similarities between classes and by the number of classes in the training sets. In each dataset, sample prediction was improved by separating the samples into three groups according to class similarities. The cross-validation of differential genes revealed four clusters with functional enrichments. The analysis of six of these genes (APOD, APOE, CLGN, CRABP1, SDHA and TIMP1) in 49 new samples showed consistent gene and protein profiles with the class similarities observed. Focusing on four subclasses of follicular tumor, we explored the diagnostic potential of 12 selected markers (CASP10, CDH16, CLGN, CRABP1, HMGB2, ALPL2, ADAMTS2, CABIN1, ALDH1A3, USP13, NR2F2, KRTHB5) by real-time quantitative RT-PCR on 32 other new samples. The gene expression profiles of follicular tumors were examined with reference to the mutational status of the Pax8-PPARÎł, TSHR, GNAS and NRAS genes. Conclusion/Significance We show that diagnostic tools defined on the basis of microarray data are more relevant when a large number of samples and tissue classes are used. Taking into account the relationships between the thyroid tumor pathologies, together with the main biological functions and pathways involved, improved the diagnostic accuracy of the samples. Our approach was particularly relevant for the classification of microfollicular adenomas

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    Caracterisation de la rupture interfaciale de points soudes d’aciers a tres haute resistance

    No full text
    Characterization of spot weld strength is a key industrial issue, particularly in the case of Advanced High Strength Steels. Today, the most widely used mechanical test evaluating this strength is the Cross Tensile Test. However, investigating the role of the different zones of one spot weld based on this test is difficult.A wedge test has been developed in order to characterize interfacial failures of spot welds. A cross section of one spot weld is observed while a wedge is inserted in between the two welded sheets. A CCD camera records the observation of the propagating crack. The limited sheet bending occurring during crack propagation allows the spot weld classification based on the total energy dissipated per unit fractured area to be efficient.Furthermore, the stable crack propagation is characterized by the in situ measurement of the crack opening angle. Finite element simulations of the test are carried out to estimate a relation between these measurements and the material resistance, approached by a cohesive zone model.Interfacial failures of spot welds of DP and TRIP steels have been investigated. The experimental measurements allow to estimate parameters of a cohesive zone model representative of the molten material failure, providing reliable and appropriate data for simulations of the mechanical behavior of the complete spot weld.La détermination de la tenue mécanique de points soudés est un enjeu industriel important, eten particulier dans le cas d’aciers à Très Haute Résistance. Actuellement, l’essai de tractionen croix est l’essai mécanique le plus répandu caractérisant la tenue des points soudés.Toutefois, l’étude de l’influence des différentes zones constituant le point soudé sur la tenueest difficile en se basant sur cet essai.Un essai d’enfoncement de coin a été développé afin de caractériser les ruptures interfacialesdes points soudés. Une section transverse d’un point soudé est observée tandis qu’un coin estinséré entre les deux tôles soudés. Une caméra CCD enregistre l'observation de lapropagation de la fissure.Le pliage limité des tôles durant la fissuration rend efficace la classification des différentspoints soudés par l'énergie totale dissipée par unité de surface rompue. De plus, la mesure insitu de l’angle d’ouverture de fissure caractérise la fissuration stable de la zone fondue. Dessimulations par éléments finis de l’essai sont conduites afin d’estimer un lien entre cesmesures et la rupture du matériau, modélisée par des zones cohésives.La rupture interfaciale de points soudés d’aciers DP et TRIP a été étudiée. Les mesuresexpérimentales permettent d’estimer les paramètres de modèles cohésifs représentatifs de larupture de la zone fondue, constituant des données fiables susceptibles d’être utilisées danstoute simulation numérique du comportement du point soudé

    Characterization of interfacial failures of advanced high strength steels spot welds

    No full text
    La détermination de la tenue mécanique de points soudés est un enjeu industriel important, eten particulier dans le cas d’aciers à Très Haute Résistance. Actuellement, l’essai de tractionen croix est l’essai mécanique le plus répandu caractérisant la tenue des points soudés.Toutefois, l’étude de l’influence des différentes zones constituant le point soudé sur la tenueest difficile en se basant sur cet essai.Un essai d’enfoncement de coin a été développé afin de caractériser les ruptures interfacialesdes points soudés. Une section transverse d’un point soudé est observée tandis qu’un coin estinséré entre les deux tôles soudés. Une caméra CCD enregistre l'observation de lapropagation de la fissure.Le pliage limité des tôles durant la fissuration rend efficace la classification des différentspoints soudés par l'énergie totale dissipée par unité de surface rompue. De plus, la mesure insitu de l’angle d’ouverture de fissure caractérise la fissuration stable de la zone fondue. Dessimulations par éléments finis de l’essai sont conduites afin d’estimer un lien entre cesmesures et la rupture du matériau, modélisée par des zones cohésives.La rupture interfaciale de points soudés d’aciers DP et TRIP a été étudiée. Les mesuresexpérimentales permettent d’estimer les paramètres de modèles cohésifs représentatifs de larupture de la zone fondue, constituant des données fiables susceptibles d’être utilisées danstoute simulation numérique du comportement du point soudé.Characterization of spot weld strength is a key industrial issue, particularly in the case of Advanced High Strength Steels. Today, the most widely used mechanical test evaluating this strength is the Cross Tensile Test. However, investigating the role of the different zones of one spot weld based on this test is difficult.A wedge test has been developed in order to characterize interfacial failures of spot welds. A cross section of one spot weld is observed while a wedge is inserted in between the two welded sheets. A CCD camera records the observation of the propagating crack. The limited sheet bending occurring during crack propagation allows the spot weld classification based on the total energy dissipated per unit fractured area to be efficient.Furthermore, the stable crack propagation is characterized by the in situ measurement of the crack opening angle. Finite element simulations of the test are carried out to estimate a relation between these measurements and the material resistance, approached by a cohesive zone model.Interfacial failures of spot welds of DP and TRIP steels have been investigated. The experimental measurements allow to estimate parameters of a cohesive zone model representative of the molten material failure, providing reliable and appropriate data for simulations of the mechanical behavior of the complete spot weld

    Caracterisation de la rupture interfaciale de points soudes d'aciers a tres haute resistance

    No full text
    La détermination de la tenue mécanique de points soudés est un enjeu industriel important, eten particulier dans le cas d aciers à Très Haute Résistance. Actuellement, l essai de tractionen croix est l essai mécanique le plus répandu caractérisant la tenue des points soudés.Toutefois, l étude de l influence des différentes zones constituant le point soudé sur la tenueest difficile en se basant sur cet essai.Un essai d enfoncement de coin a été développé afin de caractériser les ruptures interfacialesdes points soudés. Une section transverse d un point soudé est observée tandis qu un coin estinséré entre les deux tôles soudés. Une caméra CCD enregistre l'observation de lapropagation de la fissure.Le pliage limité des tôles durant la fissuration rend efficace la classification des différentspoints soudés par l'énergie totale dissipée par unité de surface rompue. De plus, la mesure insitu de l angle d ouverture de fissure caractérise la fissuration stable de la zone fondue. Dessimulations par éléments finis de l essai sont conduites afin d estimer un lien entre cesmesures et la rupture du matériau, modélisée par des zones cohésives.La rupture interfaciale de points soudés d aciers DP et TRIP a été étudiée. Les mesuresexpérimentales permettent d estimer les paramètres de modèles cohésifs représentatifs de larupture de la zone fondue, constituant des données fiables susceptibles d être utilisées danstoute simulation numérique du comportement du point soudé.Characterization of spot weld strength is a key industrial issue, particularly in the case of Advanced High Strength Steels. Today, the most widely used mechanical test evaluating this strength is the Cross Tensile Test. However, investigating the role of the different zones of one spot weld based on this test is difficult.A wedge test has been developed in order to characterize interfacial failures of spot welds. A cross section of one spot weld is observed while a wedge is inserted in between the two welded sheets. A CCD camera records the observation of the propagating crack. The limited sheet bending occurring during crack propagation allows the spot weld classification based on the total energy dissipated per unit fractured area to be efficient.Furthermore, the stable crack propagation is characterized by the in situ measurement of the crack opening angle. Finite element simulations of the test are carried out to estimate a relation between these measurements and the material resistance, approached by a cohesive zone model.Interfacial failures of spot welds of DP and TRIP steels have been investigated. The experimental measurements allow to estimate parameters of a cohesive zone model representative of the molten material failure, providing reliable and appropriate data for simulations of the mechanical behavior of the complete spot weld.ST ETIENNE-ENS des Mines (422182304) / SudocSudocFranceF
    • …
    corecore