3 research outputs found

    Determination of jet calibration and energy resolution in proton–proton collisions at s = 8 TeV using the ATLAS detector

    Get PDF
    Abstract: The jet energy scale, jet energy resolution, and their systematic uncertainties are measured for jets reconstructed with the ATLAS detector in 2012 using proton–proton data produced at a centre-of-mass energy of 8 TeV with an integrated luminosity of 20fb-1. Jets are reconstructed from clusters of energy depositions in the ATLAS calorimeters using the anti-kt algorithm. A jet calibration scheme is applied in multiple steps, each addressing specific effects including mitigation of contributions from additional proton–proton collisions, loss of energy in dead material, calorimeter non-compensation, angular biases and other global jet effects. The final calibration step uses several in situ techniques and corrects for residual effects not captured by the initial calibration. These analyses measure both the jet energy scale and resolution by exploiting the transverse momentum balance in γ + jet, Z + jet, dijet, and multijet events. A statistical combination of these measurements is performed. In the central detector region, the derived calibration has a precision better than 1% for jets with transverse momentum 150GeV<pT< 1500 GeV, and the relative energy resolution is (8.4±0.6)% for pT=100GeV and (23±2)% for pT=20GeV. The calibration scheme for jets with radius parameter R=1.0, for which jets receive a dedicated calibration of the jet mass, is also discussed

    Search for Higgs Boson Decays into a Z Boson and a Light Hadronically Decaying Resonance Using 13 TeV pp Collision Data from the ATLAS Detector

    No full text
    A search for Higgs boson decays into a Z boson and a light resonance in two-lepton plus jet events is performed, using a p p collision dataset with an integrated luminosity of 139  fb − 1 collected at √ s = 13 TeV by the ATLAS experiment at the CERN LHC. The resonance considered is a light boson with a mass below 4 GeV from a possible extended scalar sector or a charmonium state. Multivariate discriminants are used for the event selection and for evaluating the mass of the light resonance. No excess of events above the expected background is found. Observed (expected) 95% confidence-level upper limits are set on the Higgs boson production cross section times branching fraction to a Z boson and the signal resonance, with values in the range 17–340 pb ( 16 + 6 − 5 – 32 0 + 130 − 90 pb ) for the different light spin-0 boson mass and branching fraction hypotheses, and with values of 110 and 100 pb ( 100 + 40 − 30 and 100 + 40 − 30  pb ) for the η c and J / ψ hypotheses, respectively

    Search for heavy ZZ resonances in the +−+− and +−νν¯ final states using proton–proton collisions at √s = 13 TeV with the ATLAS detector

    No full text
    A search for heavy resonances decaying into a pair of Z bosons leading to +−+− and +−νν¯ final states, where stands for either an electron or a muon, is presented. The search uses proton–proton collision data at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 36.1 fb−1 collected with the ATLAS detector during 2015 and 2016 at the Large Hadron Collider. Different mass ranges for the hypothetical resonances are considered, depending on the final state and model. The different ranges span between 200 and 2000 GeV. The results are interpreted as upper limits on the production cross section of a spin-0 or spin-2 resonance. The upper limits for the spin-0 resonance are translated to exclusion contours in the context of Type-I and Type-II two-Higgs-doublet models, while those for the spin-2 resonance are used to constrain the Randall–Sundrum model with an extra dimension giving rise to spin-2 graviton excitations
    corecore