31 research outputs found
Decomposition analysis of LTREs may facilitate the design of short-term ecotoxicological tests
This study compared two methods, based on re-analyzed data from a partly published life table response experiment (LTRE), to help determine the optimal approach for designing ecotoxicological assessments. The 36-day LTRE data recorded the toxic effects of cadmium (Cd) and imidacloprid, alone and in combination, on the reproduction and survivorship of aphids (Acyrthosiphon pisum Harris). We used this data to construct an age-classified matrix model (six age classes, each 6 days long) to estimate aphid population growth rate (λ) under each treatment. For each treatment, an elasticity analysis and a demographic decomposition analysis were performed, and results were compared. Despite different results expected from the two toxicants, the elasticity values were very similar. The elasticity of λ with respect to survival was highest in the first age class, and that with respect to fertility was highest in the second age class. The demographic decomposition analysis examined how changes in life-history traits contributed to differences in λ between control and treated populations (Δλ). This indicated that the most important contributors to Δλ were the differences in survival (resulting from both demographic sensitivity and toxicity) in the first and the second age classes of aphids and differences in fertility in the third and the fourth age classes. Additionally, the toxicants acted differently. Cd reduced Δλ by impairing fertility at third age class and reducing survivorship from the second to the third age class. Imidacloprid mostly reduced survivorship at the first and second age classes. The elasticity and decomposition analyses showed different results, because these methods addressed different questions about the interaction of organism life history and sensitivity to toxicants. This study indicated that the LTRE may be useful for designing individual-level ecotoxicological experiments that account for both the effects of the toxicant and the demographic sensitivity of the organism
A new method to quantify and compare the multiple components of fitness-A study case with kelp niche partition by divergent microstage adaptations to Temperature
Point 1 Management of crops, commercialized or protected species, plagues or life-cycle evolution are subjects requiring comparisons among different demographic strategies. The simpler methods fail in relating changes in vital rates with changes in population viability whereas more complex methods lack accuracy by neglecting interactions among vital rates. Point 2 The difference between the fitness (evaluated by the population growth rate.) of two alternative demographies is decomposed into the contributions of the differences between the pair-wised vital rates and their interactions. This is achieved through a full Taylor expansion (i.e. remainder = 0) of the demographic model. The significance of each term is determined by permutation tests under the null hypothesis that all demographies come from the same pool. Point 3 An example is given with periodic demographic matrices of the microscopic haploid phase of two kelp cryptic species observed to partition their niche occupation along the Chilean coast. The method provided clear and synthetic results showing conditional differentiation of reproduction is an important driver for their differences in fitness along the latitudinal temperature gradient. But it also demonstrated that interactions among vital rates cannot be neglected as they compose a significant part of the differences between demographies. Point 4 This method allows researchers to access the effects of multiple effective changes in a life-cycle from only two experiments. Evolutionists can determine with confidence the effective causes for changes in fitness whereas population managers can determine best strategies from simpler experimental designs.CONICYT-FRENCH EMBASSADY Ph.D. gran
Temperature Effects on Gametophyte Life-History Traits and Geographic Distribution of Two Cryptic Kelp Species
A major determinant of the geographic distribution of a species is expected to be its physiological response to changing abiotic variables over its range. The range of a species often corresponds to the geographic extent of temperature regimes the organism can physiologically tolerate. Many species have very distinct life history stages that may exhibit different responses to environmental factors. In this study we emphasized the critical role of the haploid microscopic stage (gametophyte) of the life cycle to explain the difference of edge distribution of two related kelp species. Lessonia nigrescens was recently identified as two cryptic species occurring in parapatry along the Chilean coast: one located north and the other south of a biogeographic boundary at latitude 29–30°S. Six life history traits from microscopic stages were identified and estimated under five treatments of temperature in eight locations distributed along the Chilean coast in order to (1) estimate the role of temperature in the present distribution of the two cryptic L. nigrescens species, (2) compare marginal populations to central populations of the two cryptic species. In addition, we created a periodic matrix model to estimate the population growth rate (λ) at the five temperature treatments. Differential tolerance to temperature was demonstrated between the two species, with the gametophytes of the Northern species being more tolerant to higher temperatures than gametophytes from the south. Second, the two species exhibited different life history strategies with a shorter haploid phase in the Northern species contrasted with considerable vegetative growth in the Southern species haploid stage. These results provide strong ecological evidence for the differentiation process of the two cryptic species and show local adaptation of the life cycle at the range limits of the distribution. Ecological and evolutionary implications of these findings are discussed
Living on the Edge: Assessing the Extinction Risk of Critically Endangered Bonelli’s Eagle in Italy
Background: The population of Bonelli’s eagle (Aquila fasciata) has declined drastically throughout its European range due to habitat degradation and unnatural elevated mortality. There are less than 1500 breeding pairs accounted for in Europe, and the species is currently catalogued as Critically Endangered in Italy, where the 22 territories of Sicily, represent nearly 95% of the entire Italian population. However, despite national and European conservation concerns, the species currently lacks a specific conservation plan, and no previous attempts to estimate the risk of extinction have been made. Methodology/Principal Findings: We incorporated the most updated demographic information available to assess the extinction risk of endangered Bonelli’s eagle in Italy through a Population Viability Analysis. Using perturbation analyses (sensitivity and elasticity), and a combination of demographic data obtained from an assortment of independent methods, we evaluated which demographic parameters have more influence on the population’s fate. We also simulated different scenarios to explore the effects of possible management actions. Our results showed that under the current conditions, Bonelli’s eagle is expected to become extinct in Italy in less than 50 years. Stand-alone juvenile mortality was the most critical demographic parameter with the strongest influence on population persistence with respect to other demographic parameters. Measures aimed at either decreasing juvenile mortality, adult mortality or decreasing both juvenile and adult mortality resulted in equivalent net positive effects on population persistence (population growth rate l.1). In contrast, changes aimed at increasing breeding success had limited positive effects on demographic trends. Conclusions/Significance: Our PVA provides essential information to direct the decision-making process and exposes gaps in our previous knowledge. To ensure the long-term persistence of the species in Italy, measures are urgently needed to decrease both adult mortality due to poaching and juvenile mortality due to nest plundering, the top ranking mortality causes.PLL is supported by a “Juan de la Cierva” postdoctoral grant of the Spanish Ministry of Economy and Competitiveness (reference JCI-2011–09588)
Connectivity and resilience of coral reef metapopulations in marine protected areas : matching empirical efforts to predictive needs
© 2009 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial License. The definitive version was published in Coral Reefs 28 (2009): 327-337, doi:10.1007/s00338-009-0466-z.Design and decision-making for marine protected areas (MPAs) on coral reefs require prediction of MPA effects with population models. Modeling of MPAs has shown how the persistence of metapopulations in systems of MPAs depends on the size and spacing of MPAs, and levels of fishing outside the MPAs. However, the pattern of demographic connectivity produced by larval dispersal is a key uncertainty in those modeling studies. The information required to assess population persistence is a dispersal matrix containing the fraction of larvae traveling to each location from each location, not just the current number of larvae exchanged among locations. Recent metapopulation modeling research with hypothetical dispersal matrices has shown how the spatial scale of dispersal, degree of advection versus diffusion, total larval output, and temporal and spatial variability in dispersal influence population persistence. Recent empirical studies using population genetics, parentage analysis, and geochemical and artificial marks in calcified structures have improved the understanding of dispersal. However, many such studies report current self-recruitment (locally produced settlement/settlement from elsewhere), which is not as directly useful as local retention (locally produced settlement/total locally released), which is a component of the dispersal matrix. Modeling of biophysical circulation with larval particle tracking can provide the required elements of dispersal matrices and assess their sensitivity to flows and larval behavior, but it requires more assumptions than direct empirical methods. To make rapid progress in understanding the scales and patterns of connectivity, greater communication between empiricists and population modelers will be needed. Empiricists need to focus more on identifying the characteristics of the dispersal matrix, while population modelers need to track and assimilate evolving empirical results.Work by CB Paris was supported by the
National Science Foundation grant NSF-OCE 0550732. Work by
M-A Coffroth and SR Thorrold was supported by the National Science
Foundation grant NSF-OCE 0424688. Work by TL Shearer was
supported by an International Cooperative Biodiversity Group grant
R21 TW006662-01 from the Fogarty International Center at the
National Institutes of Health
Recombinational Landscape and Population Genomics of Caenorhabditis elegans
Recombination rate and linkage disequilibrium, the latter a function of population genomic processes, are the critical parameters for mapping by linkage and association, and their patterns in Caenorhabditis elegans are poorly understood. We performed high-density SNP genotyping on a large panel of recombinant inbred advanced intercross lines (RIAILs) of C. elegans to characterize the landscape of recombination and, on a panel of wild strains, to characterize population genomic patterns. We confirmed that C. elegans autosomes exhibit discrete domains of nearly constant recombination rate, and we show, for the first time, that the pattern holds for the X chromosome as well. The terminal domains of each chromosome, spanning about 7% of the genome, exhibit effectively no recombination. The RIAILs exhibit a 5.3-fold expansion of the genetic map. With median marker spacing of 61 kb, they are a powerful resource for mapping quantitative trait loci in C. elegans. Among 125 wild isolates, we identified only 41 distinct haplotypes. The patterns of genotypic similarity suggest that some presumed wild strains are laboratory contaminants. The Hawaiian strain, CB4856, exhibits genetic isolation from the remainder of the global population, whose members exhibit ample evidence of intercrossing and recombining. The population effective recombination rate, estimated from the pattern of linkage disequilibrium, is correlated with the estimated meiotic recombination rate, but its magnitude implies that the effective rate of outcrossing is extremely low, corroborating reports of selection against recombinant genotypes. Despite the low population, effective recombination rate and extensive linkage disequilibrium among chromosomes, which are techniques that account for background levels of genomic similarity, permit association mapping in wild C. elegans strains
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
A global research agenda for adolescents living with HIV
Despite growing interest in undertaking research in adolescent HIV, the current pace of interventional research in particular remains very low compared with the needs of adolescents living with HIV (ALHIV). More robust evidence is needed to inform innovative and targeted interventions that bridge research gaps, inform policy, and improve outcomes for adolescents. A global research prioritization exercise was undertaken by WHO and CIPHER to focus efforts on priority research in the context of diminishing resources.The Child Health and Nutrition Research Initiative (CHNRI) methodology was adapted and used. Outcomes were reviewed by an expert group and 5 priority themes identified for testing, treatment, and service delivery, accounting for existing policies, published literature, and ongoing research.A total of 986 research questions were submitted by 323 individuals from 67 countries. For HIV testing, priority themes included strategies and interventions to improve access, uptake, and linkage to care, and self-testing, particularly for key populations. For treatment, priorities included strategies to monitor and improve adherence, novel drug delivery systems, preventions and management of coinfections, optimal drug sequencing, and short- and long-term outcomes. For service delivery, priorities included service delivery models across the cascade, strategies to improve retention in care and sexual and reproductive health, support for pregnant ALHIV, and the provision of psychosocial support.This prioritized research agenda assists in focusing future research in ALHIV and will help to fill critical knowledge gaps. Key stakeholders, donors, program managers, and researchers should all support these priority questions and themes to collaboratively drive the adolescent HIV research agenda forward
Diversity of ageing across the tree of life
Evolution drives, and is driven by, demography. A genotype moulds its phenotype's age patterns of mortality and fertility in an environment; these two patterns in turn determine the genotype's fitness in that environment. Hence, to understand the evolution of ageing, age patterns of mortality and reproduction need to be compared for species across the tree of life. However, few studies have done so and only for a limited range of taxa. Here we contrast standardized patterns over age for 11 mammals, 12 other vertebrates, 10 invertebrates, 12 vascular plants and a green alga. Although it has been predicted that evolution should inevitably lead to increasing mortality and declining fertility with age after maturity, there is great variation among these species, including increasing, constant, decreasing, humped and bowed trajectories for both long-and short-lived species. This diversity challenges theoreticians to develop broader perspectives on the evolution of ageing and empiricists to study the demography of more species