39 research outputs found

    The nature of self-esteem and its relationship to anxiety and depression in adult acquired brain injury

    Get PDF
    Acquired brain injury (ABI) has a negative impact on self-esteem, which is in turn associated with mood disorders, maladaptive coping and reduced community participation. The aim of the current research was to explore self-esteem as a multi-dimensional construct and identify which factors are associated with symptoms of anxiety or depression. Eighty adults with ABI aged 17–56 years completed the Robson Self-Esteem Scale (RSES), of whom 65 also completed the Hospital Anxiety and Depression Scale; 57.5% of the sample had clinically low self-esteem. The RSES had good internal consistency (α = .89), and factor analysis identified four factors, which differed from those found previously in other populations. Multiple regression analysis revealed anxiety was differentially predicted by “Self-Worth” and “Self-Efficacy”, R2 = .44, F(4, 58) = 9, p < .001, and depression by “Self-Regard”, R2 = .38, F(4, 58) = 9, p < .001. A fourth factor, “Confidence”, did not predict depression or anxiety. In conclusion, the RSES is a reliable measure of self-esteem after ABI. Self-esteem after ABI is multidimensional and differs in structure from self-esteem in the general population. A multidimensional model of self-esteem may be helpful in development of transdiagnostic cognitive behavioural accounts of adjustment

    An antigen microarray protocol for COVID-19 serological analysis.

    Get PDF
    peer reviewedThe emergence of the coronavirus disease 2019 pandemic increased the interest in analysis of immunoglobulin responses. ELISA and lateral flow assays are widely used but are restricted by a single response value to an antigen or antigen pool. Here, we describe antigen microarrays, an alternative allowing simultaneous assessment of multiple interactions between antigens and the immunoglobulin content of patient sera. The technique requires minimal reagents and sample input and can be adapted to a wide variety of potential antigenic targets of interest

    Multi-omic modeling of translational efficiency for synthetic gene design

    Get PDF
    Controlled expression of recombinant genes in CHO cells for advanced cell engineering will require precise, coordinated control of the synthetic processes that underpin the production of specific recombinant products or the optimal stoichiometry of functional effector proteins for multigene engineering applications. Although control of recombinant gene transcription in CHO host cells is now possible, technologies that enable control of recombinant mRNA translation rate are lacking. This is undesirable as in eukaryotic cells, cellular mRNA concentration itself may only explain a relatively small proportion of the variation in cellular protein abundance; mRNA translation rate is by far the most important contributor to cellular protein concentration. We have taken a top-down, genome-scale computational modeling approach to develop computational design tools that enable control of recombinant gene translational activity in CHO cells. Through a combination of pulsed stable isotope labelling of amino acids in cell culture (pSILAC) and RNA-Seq based analysis of the CHO cell transcriptome we quantified the translational efficiency of \u3e 4000 mRNAs. Based on informatic reconstruction of CHO mRNAs (to include untranslated and coding sequences) we built and trained a gaussian process regression model using over 250 defined mRNA sequence features to enable validated in silico prediction of mRNA translational efficiency in CHO cells from mRNA sequence. Using this genome-scale empirical modeling we created a computational gene analysis and design platform that permits both prediction of the translational efficiency of natural and recombinant mRNAs in CHO cells and de novo design of synthetic mRNAs with predictable translational activity. This platform will be employed to (i) maximize the efficiency of recombinant mRNA translation for easy-to-express proteins, (ii) optimize the rate of mRNA translation for difficult-to-express proteins and (iii) control the stoichiometry of product synthesis in multigene expression systems

    Pyruvate dehydrogenase fuels a critical citrate pool that is essential for Th17 cell effector functions

    Get PDF
    peer reviewedPyruvate dehydrogenase (PDH) is the central enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle. The importance of PDH function in T helper 17 (Th17) cells still remains to be studied. Here, we show that PDH is essential for the generation of a glucose-derived citrate pool needed for Th17 cell proliferation, survival, and effector function. In vivo, mice harboring a T cell-specific deletion of PDH are less susceptible to developing experimental autoimmune encephalomyelitis. Mechanistically, the absence of PDH in Th17 cells increases glutaminolysis, glycolysis, and lipid uptake in a mammalian target of rapamycin (mTOR)-dependent manner. However, cellular citrate remains critically low in mutant Th17 cells, which interferes with oxidative phosphorylation (OXPHOS), lipid synthesis, and histone acetylation, crucial for transcription of Th17 signature genes. Increasing cellular citrate in PDH-deficient Th17 cells restores their metabolism and function, identifying a metabolic feedback loop within the central carbon metabolism that may offer possibilities for therapeutically targeting Th17 cell-driven autoimmunity

    History in schools and the problem of 'the nation'

    Get PDF
    The article examines the enduring popularity of a form of school history which is based predominantly on the idea that the transmission of a positive story about the national past will inculcate in young people a sense of loyalty to the state; a reassuring and positive sense of identity and belonging; and a sense of social solidarity with fellow citizens. England is one of the countries which has to at least some extent moved away from this model of school history; but the past few years have seen suggestions for a move back to a history curriculum which focuses predominantly on the transmission of ‘Our Island Story’; and which presents a positive rendering of that story. The history curriculum in England is currently under review; and public pronouncements by politicians; academic historians and newspaper editorials suggest strong pressures towards a restoration of what is often termed ‘traditional’ school history; which was prevalent in English schools before the advent of what has been termed ‘New history’ in the 1970s. The paper questions some of the arguments which have been put forward in order to justify a return to a history curriculum based on a positive and unproblematic narrative of the national story and suggests that such a course of action is based on some unexamined assumptions and a limited understanding of pedagogy and learning. The final section of the paper outlines several weaknesses and flaws in the arguments for reverting to a traditional (i.e. ‘nation-based’ and celebratory) form of school history; and some of the dangers inherent in such a project

    Cost-effectiveness of non-invasive methods for assessment and monitoring of liver fibrosis and cirrhosis in patients with chronic liver disease: systematic review and economic evaluation

    Get PDF
    BACKGROUND: Liver biopsy is the reference standard for diagnosing the extent of fibrosis in chronic liver disease; however, it is invasive, with the potential for serious complications. Alternatives to biopsy include non-invasive liver tests (NILTs); however, the cost-effectiveness of these needs to be established. OBJECTIVE: To assess the diagnostic accuracy and cost-effectiveness of NILTs in patients with chronic liver disease. DATA SOURCES: We searched various databases from 1998 to April 2012, recent conference proceedings and reference lists. METHODS: We included studies that assessed the diagnostic accuracy of NILTs using liver biopsy as the reference standard. Diagnostic studies were assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Meta-analysis was conducted using the bivariate random-effects model with correlation between sensitivity and specificity (whenever possible). Decision models were used to evaluate the cost-effectiveness of the NILTs. Expected costs were estimated using a NHS perspective and health outcomes were measured as quality-adjusted life-years (QALYs). Markov models were developed to estimate long-term costs and QALYs following testing, and antiviral treatment where indicated, for chronic hepatitis B (HBV) and chronic hepatitis C (HCV). NILTs were compared with each other, sequential testing strategies, biopsy and strategies including no testing. For alcoholic liver disease (ALD), we assessed the cost-effectiveness of NILTs in the context of potentially increasing abstinence from alcohol. Owing to a lack of data and treatments specifically for fibrosis in patients with non-alcoholic fatty liver disease (NAFLD), the analysis was limited to an incremental cost per correct diagnosis. An analysis of NILTs to identify patients with cirrhosis for increased monitoring was also conducted. RESULTS: Given a cost-effectiveness threshold of £20,000 per QALY, treating everyone with HCV without prior testing was cost-effective with an incremental cost-effectiveness ratio (ICER) of £9204. This was robust in most sensitivity analyses but sensitive to the extent of treatment benefit for patients with mild fibrosis. For HBV [hepatitis B e antigen (HBeAg)-negative)] this strategy had an ICER of £28,137, which was cost-effective only if the upper bound of the standard UK cost-effectiveness threshold range (£30,000) is acceptable. For HBeAg-positive disease, two NILTs applied sequentially (hyaluronic acid and magnetic resonance elastography) were cost-effective at a £20,000 threshold (ICER: £19,612); however, the results were highly uncertain, with several test strategies having similar expected outcomes and costs. For patients with ALD, liver biopsy was the cost-effective strategy, with an ICER of £822. LIMITATIONS: A substantial number of tests had only one study from which diagnostic accuracy was derived; therefore, there is a high risk of bias. Most NILTs did not have validated cut-offs for diagnosis of specific fibrosis stages. The findings of the ALD model were dependent on assuptions about abstinence rates assumptions and the modelling approach for NAFLD was hindered by the lack of evidence on clinically effective treatments. CONCLUSIONS: Treating everyone without NILTs is cost-effective for patients with HCV, but only for HBeAg-negative if the higher cost-effectiveness threshold is appropriate. For HBeAg-positive, two NILTs applied sequentially were cost-effective but highly uncertain. Further evidence for treatment effectiveness is required for ALD and NAFLD. STUDY REGISTRATION: This study is registered as PROSPERO CRD42011001561. FUNDING: The National Institute for Health Research Health Technology Assessment programme

    A multi-omics integrative approach unravels novel genes and pathways associated with senescence escape after targeted therapy in NRAS mutant melanoma.

    Get PDF
    peer reviewedTherapy Induced Senescence (TIS) leads to sustained growth arrest of cancer cells. The associated cytostasis has been shown to be reversible and cells escaping senescence further enhance the aggressiveness of cancers. Chemicals specifically targeting senescent cells, so-called senolytics, constitute a promising avenue for improved cancer treatment in combination with targeted therapies. Understanding how cancer cells evade senescence is needed to optimise the clinical benefits of this therapeutic approach. Here we characterised the response of three different NRAS mutant melanoma cell lines to a combination of CDK4/6 and MEK inhibitors over 33 days. Transcriptomic data show that all cell lines trigger a senescence programme coupled with strong induction of interferons. Kinome profiling revealed the activation of Receptor Tyrosine Kinases (RTKs) and enriched downstream signaling of neurotrophin, ErbB and insulin pathways. Characterisation of the miRNA interactome associates miR-211-5p with resistant phenotypes. Finally, iCell-based integration of bulk and single-cell RNA-seq data identifies biological processes perturbed during senescence and predicts 90 new genes involved in its escape. Overall, our data associate insulin signaling with persistence of a senescent phenotype and suggest a new role for interferon gamma in senescence escape through the induction of EMT and the activation of ERK5 signaling
    corecore